IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v27y2011i01p178-198_00.html
   My bibliography  Save this article

Empirical Likelihood Confidence Intervals For Dependent Duration Data

Author

Listed:
  • El Ghouch, Anouar
  • Van Keilegom, Ingrid
  • McKeague, Ian W.

Abstract

Three types of confidence intervals are developed for a general class of functionals of a survival distribution based on censored dependent data. The confidence intervals are constructed via asymptotic normality (Wald’s method), the empirical likelihood (EL) method, and the blockwise EL method in which sample means over blocks of observations are used in place of the original data. Asymptotic results are derived to accurately calibrate the various procedures, and their performance is evaluated in a simulation study. The problem of the choice of the block size is also discussed.

Suggested Citation

  • El Ghouch, Anouar & Van Keilegom, Ingrid & McKeague, Ian W., 2011. "Empirical Likelihood Confidence Intervals For Dependent Duration Data," Econometric Theory, Cambridge University Press, vol. 27(1), pages 178-198, February.
  • Handle: RePEc:cup:etheor:v:27:y:2011:i:01:p:178-198_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466610000162/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arvanitis, Stelios & Post, Thierry & Potì, Valerio & Karabati, Selcuk, 2021. "Nonparametric tests for Optimal Predictive Ability," International Journal of Forecasting, Elsevier, vol. 37(2), pages 881-898.
    2. Stelios Arvanitis & Thierry Post, 2024. "Stochastic Arbitrage Opportunities: Set Estimation and Statistical Testing," Mathematics, MDPI, vol. 12(4), pages 1-19, February.
    3. Sun, Jiajing & Hong, Yongmiao & Linton, Oliver & Zhao, Xiaolu, 2022. "Adjusted-range self-normalized confidence interval construction for censored dependent data," Economics Letters, Elsevier, vol. 220(C).
    4. Yinxiao Huang & Stanislav Volgushev & Xiaofeng Shao, 2015. "On Self-Normalization For Censored Dependent Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(1), pages 109-124, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:27:y:2011:i:01:p:178-198_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.