IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v24y2008i02p528-544_08.html
   My bibliography  Save this article

Predictive Density Estimation For Multiple Regression

Author

Listed:
  • George, Edward I.
  • Xu, Xinyi

Abstract

Suppose we observe X ∼ Nm(Aβ,σ2I) and would like to estimate the predictive density p(y|β) of a future Y ∼ Nn(Bβ,σ2I). Evaluating predictive estimates by Kullback–Leibler loss, we develop and evaluate Bayes procedures for this problem. We obtain general sufficient conditions for minimaxity and dominance of the “noninformative” uniform prior Bayes procedure. We extend these results to situations where only a subset of the predictors in A is thought to be potentially irrelevant. We then consider the more realistic situation where there is model uncertainty and this subset is unknown. For this situation we develop multiple shrinkage predictive estimators and obtain general minimaxity and dominance conditions. Finally, we provide an explicit example of a minimax multiple shrinkage predictive estimator based on scaled harmonic priors.We acknowledge Larry Brown, Feng Liang, Linda Zhao, and three referees for their helpful suggestions. This work was supported by various NSF grants, DMS-0605102 the most recent.

Suggested Citation

  • George, Edward I. & Xu, Xinyi, 2008. "Predictive Density Estimation For Multiple Regression," Econometric Theory, Cambridge University Press, vol. 24(2), pages 528-544, April.
  • Handle: RePEc:cup:etheor:v:24:y:2008:i:02:p:528-544_08
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466608080213/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Xinyi & Zhou, Dunke, 2011. "Empirical Bayes predictive densities for high-dimensional normal models," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1417-1428, November.
    2. Takeru Matsuda & Fumiyasu Komaki, 2015. "Singular value shrinkage priors for Bayesian prediction," Biometrika, Biometrika Trust, vol. 102(4), pages 843-854.
    3. Kobayashi, Kei & Komaki, Fumiyasu, 2008. "Bayesian shrinkage prediction for the regression problem," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1888-1905, October.
    4. Komaki, Fumiyasu, 2015. "Simultaneous prediction for independent Poisson processes with different durations," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 35-48.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:24:y:2008:i:02:p:528-544_08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.