IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v20y2004i03p485-512_20.html
   My bibliography  Save this article

Regression Model Fitting With A Long Memory Covariate Process

Author

Listed:
  • Koul, Hira L.
  • Baillie, Richard T.
  • Surgailis, Donatas

Abstract

This paper proposes some tests for fitting a regression model with a long memory covariate process and with errors that form either a martingale difference sequence or a long memory moving average process, independent of the covariate. The tests are based on a partial sum process of the residuals from the fitted regression. The asymptotic null distribution of this process is discussed in some detail under each set of these assumptions. The proposed tests are shown to have known asymptotic null distributions in the case of martingale difference errors and also in the case of fitting a polynomial of a known degree through the origin when the errors have long memory. The theory is then illustrated with some examples based on the forward premium anomaly where a squared interest rate differential proxies a time dependent risk premium. The paper also shows that the proposed test statistic converges weakly to nonstandard distributions in some cases.The authors gratefully acknowledge the helpful comments of the co-editor Don Andrews and two anonymous referees. The research of the first two authors was partly supported by NSF grant DMS 00-71619.

Suggested Citation

  • Koul, Hira L. & Baillie, Richard T. & Surgailis, Donatas, 2004. "Regression Model Fitting With A Long Memory Covariate Process," Econometric Theory, Cambridge University Press, vol. 20(3), pages 485-512, June.
  • Handle: RePEc:cup:etheor:v:20:y:2004:i:03:p:485-512_20
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466604203036/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toshio Honda, 2010. "Nonparametric estimation of conditional medians for linear and related processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 995-1021, December.
    2. Hira Koul & Donatas Surgailis & Nao Mimoto, 2015. "Minimum distance lack-of-fit tests under long memory errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(2), pages 119-143, February.
    3. Hira L. Koul & Fang Li, 2020. "Comparing two nonparametric regression curves in the presence of long memory in covariates and errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(4), pages 499-517, May.
    4. Lihong Wang, 2020. "Lack of fit test for long memory regression models," Statistical Papers, Springer, vol. 61(3), pages 1043-1067, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:20:y:2004:i:03:p:485-512_20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.