IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v20y2004i02p382-416_20.html
   My bibliography  Save this article

A Generalized Portmanteau Goodness-Of-Fit Test For Time Series Models

Author

Listed:
  • Chen, Willa W.
  • Deo, Rohit S.

Abstract

We present a goodness-of-fit test for time series models based on the discrete spectral average estimator. Unlike current tests of goodness of fit, the asymptotic distribution of our test statistic allows the null hypothesis to be either a short- or long-range dependence model. Our test is in the frequency domain, is easy to compute, and does not require the calculation of residuals from the fitted model. This is especially advantageous when the fitted model is not a finite-order autoregressive model. The test statistic is a frequency domain analogue of the test by Hong (1996, Econometrica 64, 837–864), which is a generalization of the Box and Pierce (1970, Journal of the American Statistical Association 65, 1509–1526) test statistic. A simulation study shows that our test has power comparable to that of Hong's test and superior to that of another frequency domain test by Milhoj (1981, Biometrika 68, 177–187).

Suggested Citation

  • Chen, Willa W. & Deo, Rohit S., 2004. "A Generalized Portmanteau Goodness-Of-Fit Test For Time Series Models," Econometric Theory, Cambridge University Press, vol. 20(2), pages 382-416, April.
  • Handle: RePEc:cup:etheor:v:20:y:2004:i:02:p:382-416_20
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466604202067/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:wyi:journl:002087 is not listed on IDEAS
    2. Laura Mayoral, 2007. "Minimum distance estimation of stationary and non-stationary ARFIMA processes," Econometrics Journal, Royal Economic Society, vol. 10(1), pages 124-148, March.
    3. Nankervis, John C. & Savin, N. E., 2010. "Testing for Serial Correlation: Generalized Andrews–Ploberger Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 246-255.
    4. Proietti, Tommaso & Luati, Alessandra, 2015. "The generalised autocovariance function," Journal of Econometrics, Elsevier, vol. 186(1), pages 245-257.
    5. Filip Žikeš & Jozef Baruník & Nikhil Shenai, 2017. "Modeling and forecasting persistent financial durations," Econometric Reviews, Taylor & Francis Journals, vol. 36(10), pages 1081-1110, November.
    6. Poulin, Jennifer & Duchesne, Pierre, 2008. "On the power transformation of kernel-based tests for serial correlation in vector time series: Some finite sample results and a comparison with the bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4432-4457, May.
    7. John K. Dagsvik & Mariachiara Fortuna & Sigmund Hov Moen, 2020. "How does temperature vary over time?: evidence on the stationary and fractal nature of temperature fluctuations," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 883-908, June.
    8. T. S. McElroy, 2016. "Nonnested model comparisons for time series," Biometrika, Biometrika Trust, vol. 103(4), pages 905-914.
    9. Davidson, James & Sibbertsen, Philipp, 2009. "Tests of bias in log-periodogram regression," Economics Letters, Elsevier, vol. 102(2), pages 83-86, February.
    10. Tucker S. McElroy & Anindya Roy, 2022. "Model identification via total Frobenius norm of multivariate spectra," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 473-495, April.
    11. Chen, Willa W. & Deo, Rohit S., 2006. "Estimation of mis-specified long memory models," Journal of Econometrics, Elsevier, vol. 134(1), pages 257-281, September.
    12. McElroy, Tucker & Holan, Scott, 2009. "A local spectral approach for assessing time series model misspecification," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 604-621, April.
    13. Deo, Rohit S. & Chen, Willa W., 2003. "Estimation of Mis-Specified Long Memory Models," Papers 2004,03, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    14. Terence Tai-Leung Chong, 2007. "Estimating the Fractionally Integrated Model with a Break in the Differencing Parameter," Economics Bulletin, AccessEcon, vol. 3(67), pages 1-10.
    15. Li, Meiyu & Gençay, Ramazan, 2017. "Tests for serial correlation of unknown form in dynamic least squares regression with wavelets," Economics Letters, Elsevier, vol. 155(C), pages 104-110.
    16. repec:ebl:ecbull:v:3:y:2007:i:67:p:1-10 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:20:y:2004:i:02:p:382-416_20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.