IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v19y2003i05p754-777_19.html
   My bibliography  Save this article

Bias Reduction In Nonparametric Diffusion Coefficient Estimation

Author

Listed:
  • Nicolau, João

Abstract

In this paper, we quantify the asymptotic bias of the Florens-Zmirou (1993, Journal of Applied Probability 30, 790–804) and Jiang and Knight (1997, Econometric Theory 13, 615–645) estimator for the diffusion coefficient when the step of discretization is fixed, and then we propose a bias adjustment that partially compensates for the distortion. Also, we show that our estimators have all the asymptotic properties of the Florens-Zmirou and Jiang and Knight estimator when the step of discretization goes to zero. We provide some examples.I thank the editor Peter C.B. Phillips and the two referees for comments and suggestions that led to considerable improvement of the paper. I am also grateful to Carlos Braumann and Tom Kundert for helpful comments. This research was supported by the Fundação para a Ciência e a Tecnologia (FCT) and by POCTI.

Suggested Citation

  • Nicolau, João, 2003. "Bias Reduction In Nonparametric Diffusion Coefficient Estimation," Econometric Theory, Cambridge University Press, vol. 19(5), pages 754-777, October.
  • Handle: RePEc:cup:etheor:v:19:y:2003:i:05:p:754-777_19
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466603195035/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Ke-Li, 2010. "Reweighted Functional Estimation Of Diffusion Models," Econometric Theory, Cambridge University Press, vol. 26(2), pages 541-563, April.
    2. Xu, Ke-Li, 2009. "Empirical likelihood-based inference for nonparametric recurrent diffusions," Journal of Econometrics, Elsevier, vol. 153(1), pages 65-82, November.
    3. Kanaya, Shin, 2017. "Uniform Convergence Rates Of Kernel-Based Nonparametric Estimators For Continuous Time Diffusion Processes: A Damping Function Approach," Econometric Theory, Cambridge University Press, vol. 33(4), pages 874-914, August.
    4. Kristensen, Dennis, 2011. "Semi-nonparametric estimation and misspecification testing of diffusion models," Journal of Econometrics, Elsevier, vol. 164(2), pages 382-403, October.
    5. Gospodinov, Nikolay & Hirukawa, Masayuki, 2012. "Nonparametric estimation of scalar diffusion models of interest rates using asymmetric kernels," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 595-609.
    6. Li, Fuchun, 2007. "Testing The Parametric Specification Of The Diffusion Function In A Diffusion Process," Econometric Theory, Cambridge University Press, vol. 23(2), pages 221-250, April.
    7. Gao, Jiti & Casas, Isabel, 2008. "Specification testing in discretized diffusion models: Theory and practice," Journal of Econometrics, Elsevier, vol. 147(1), pages 131-140, November.
    8. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    9. Ye, Xu-Guo & Lin, Jin-Guan & Zhao, Yan-Yong & Hao, Hong-Xia, 2015. "Two-step estimation of the volatility functions in diffusion models with empirical applications," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 135-159.
    10. Yamamura, Mariko & Shoji, Isao, 2010. "A nonparametric method of multi-step ahead forecasting in diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2408-2415.
    11. Nikolay Gospodinov & Masayuki Hirukawa, 2008. "Nonparametric Estimation of Scalar Diffusion Processes of Interest Rates Using Asymmetric Kernels," Working Papers 08011, Concordia University, Department of Economics, revised Dec 2008.
    12. Manuel Arapis & Jiti Gao, 2006. "Empirical Comparisons in Short-Term Interest Rate Models Using Nonparametric Methods," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 310-345.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:19:y:2003:i:05:p:754-777_19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.