IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v18y2002i05p1086-1098_18.html
   My bibliography  Save this article

Pmse Performance Of The Biased Estimators In A Linear Regression Model When Relevant Regressors Are Omitted

Author

Listed:
  • Namba, Akio

Abstract

In this paper, we consider a linear regression model when relevant regressors are omitted. We derive the explicit formulae for the predictive mean squared errors (PMSEs) of the Stein-rule (SR) estimator, the positive-part Stein-rule (PSR) estimator, the minimum mean squared error (MMSE) estimator, and the adjusted minimum mean squared error (AMMSE) estimator. It is shown analytically that the PSR estimator dominates the SR estimator in terms of PMSE even when there are omitted relevant regressors. Also, our numerical results show that the PSR estimator and the AMMSE estimator have much smaller PMSEs than the ordinary least squares estimator even when the relevant regressors are omitted.

Suggested Citation

  • Namba, Akio, 2002. "Pmse Performance Of The Biased Estimators In A Linear Regression Model When Relevant Regressors Are Omitted," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1086-1098, October.
  • Handle: RePEc:cup:etheor:v:18:y:2002:i:05:p:1086-1098_18
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466602185033/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xinyu & Chen, Ti & Wan, Alan T.K. & Zou, Guohua, 2009. "Robustness of Stein-type estimators under a non-scalar error covariance structure," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2376-2388, November.
    2. Hu, Guikai & Yu, Shenghua & Luo, Han, 2015. "Comparisons of variance estimators in a misspecified linear model with elliptically contoured errors," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 266-276.
    3. Akio Namba & Kazuhiro Ohtani, 2007. "Risk comparison of the Stein-rule estimator in a linear regression model with omitted relevant regressors and multivariatet errors under the Pitman nearness criterion," Statistical Papers, Springer, vol. 48(1), pages 151-162, January.
    4. Namba, Akio & Ohtani, Kazuhiro, 2006. "PMSE performance of the Stein-rule and positive-part Stein-rule estimators in a regression model with or without proxy variables," Statistics & Probability Letters, Elsevier, vol. 76(9), pages 898-906, May.
    5. Namba, Akio, 2003. "PMSE dominance of the positive-part shrinkage estimator in a regression model when relevant regressors are omitted," Statistics & Probability Letters, Elsevier, vol. 63(4), pages 375-385, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:18:y:2002:i:05:p:1086-1098_18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.