IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v15y1999i01p1-23_15.html
   My bibliography  Save this article

Unit Root Tests Based On Adaptive Maximum Likelihood Estimation

Author

Listed:
  • Shin, Dong Wan
  • So, Beong Soo

Abstract

Adaptive maximum likelihood estimators of unit roots in autoregressive processes with possibly non-Gaussian innovations are considered. Unit root tests based on the adaptive estimators are constructed. Limiting distributions of the test statistics are derived, which are linear combinations of two functionals of Brownian motions. A Monte Carlo simulation reveals that the proposed tests have improved powers over the classical Dickey–Fuller tests when the distribution of the innovation is not close to normal. We also compare the proposed tests with those of Lucas (1995, Econometric Theory 11, 331–346) based on M-estimators.

Suggested Citation

  • Shin, Dong Wan & So, Beong Soo, 1999. "Unit Root Tests Based On Adaptive Maximum Likelihood Estimation," Econometric Theory, Cambridge University Press, vol. 15(1), pages 1-23, February.
  • Handle: RePEc:cup:etheor:v:15:y:1999:i:01:p:1-23_15
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466699151016/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. So, Beong Soo & Shin, Dong Wan, 2001. "An invariant sign test for random walks based on recursive median adjustment," Journal of Econometrics, Elsevier, vol. 102(2), pages 197-229, June.
    2. Shiqing Ling & W. K. Li & Michael McAleer, 2003. "Estimation and Testing for Unit Root Processes with GARCH (1, 1) Errors: Theory and Monte Carlo Evidence," Econometric Reviews, Taylor & Francis Journals, vol. 22(2), pages 179-202.
    3. Galvao Jr., Antonio F., 2009. "Unit root quantile autoregression testing using covariates," Journal of Econometrics, Elsevier, vol. 152(2), pages 165-178, October.
    4. Dong Wan Shin & Oesook Lee, 2004. "M‐Estimation for regressions with integrated regressors and arma errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 283-299, March.
    5. Ted Juhl & Zhijie Xiao, 2000. "N-Consistent Semiparametric Regression: Partially Linear Models with Unit Roots," Econometric Society World Congress 2000 Contributed Papers 1532, Econometric Society.
    6. Kai Carstensen, 2003. "The finite-sample performance of robust unit root tests," Statistical Papers, Springer, vol. 44(4), pages 469-482, October.
    7. Shiqing Ling & Michael McAleer, 2001. "On Adaptive Estimation in Nonstationary ARMA Models with GARCH Errors," ISER Discussion Paper 0548, Institute of Social and Economic Research, Osaka University.
    8. Shin, Dong Wan & Park, Soo Jung & Oh, Man-Suk, 2009. "A robust sign test for panel unit roots under cross sectional dependence," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1312-1327, February.
    9. Shin, Dong Wan & Park, Sangun, 2010. "Robust panel unit root tests for cross-sectionally dependent multiple time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2801-2813, November.
    10. Shin, Dong Wan & So, Beong Soo, 1999. "New tests for unit roots in autoregressive processes with possibly infinite variance errors," Statistics & Probability Letters, Elsevier, vol. 44(4), pages 387-397, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:15:y:1999:i:01:p:1-23_15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.