IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v14y1998i05p560-603_14.html
   My bibliography  Save this article

An Autoregressive Spectral Density Estimator At Frequency Zero For Nonstationarity Tests

Author

Listed:
  • Perron, Pierre
  • Ng, Serena

Abstract

Many unit root and cointegration tests require an estimate of the spectral density function at frequency zero of some process. Commonly used are kernel estimators based on weighted sums of autocovariances constructed using estimated residuals from an AR(1) regression. However, it is known that with substantially correlated errors, the OLS estimate of the AR(1) parameter is severely biased. In this paper, we first show that this least-squares bias induces a significant increase in the bias and mean-squared error (MSE) of kernel-based estimators. We then consider a variant of the autoregressive spectral density estimator that does not share these shortcomings because it bypasses the use of the estimate from the AR(1) regression. Simulations and local asymptotic analyses show its bias and MSE to be much smaller than those of a kernel-based estimator when there is strong negative serial correlation. We also include a discussion about the appropriate choice of the truncation lag.

Suggested Citation

  • Perron, Pierre & Ng, Serena, 1998. "An Autoregressive Spectral Density Estimator At Frequency Zero For Nonstationarity Tests," Econometric Theory, Cambridge University Press, vol. 14(5), pages 560-603, October.
  • Handle: RePEc:cup:etheor:v:14:y:1998:i:05:p:560-603_14
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466698145024/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:14:y:1998:i:05:p:560-603_14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.