IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v13y1997i01p3-31_00.html
   My bibliography  Save this article

Semiparametric Estimation of a Single-Index Model with Nonparametrically Generated Regressors

Author

Listed:
  • Ahn, Hyungtaik

Abstract

This paper develops a theory of estimating parameters of a generated regressor model in which some explanatory variables in the equation of interest are the unknown conditional means of certain observable variables given other observable regressors. The paper imposes a weak nonparametric restriction on the form of the conditional means and maintains a single-index assumption on the distribution of the dependent variable in the equation of interest. The estimation method follows a two-step approach: The first step estimates the conditional means in the index nonparametrically, and the second step estimates the parameters by an analytically convenient weighted average derivative method. It is established that the two-step estimator is root-n-consistent and asymptotically normal. The asymptotic variance exceeds that of the one-step hypothetical estimator, which would be obtainable if the first-step regression were known.

Suggested Citation

  • Ahn, Hyungtaik, 1997. "Semiparametric Estimation of a Single-Index Model with Nonparametrically Generated Regressors," Econometric Theory, Cambridge University Press, vol. 13(1), pages 3-31, February.
  • Handle: RePEc:cup:etheor:v:13:y:1997:i:01:p:3-31_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466600005624/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burton Hollifield & Robert A. Miller & Patrik Sandås, 2004. "Empirical Analysis of Limit Order Markets," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(4), pages 1027-1063.
    2. Le-Yu Chen & Sokbae (Simon) Lee & Myung Jae Sung, 2013. "Maximum score estimation of preference parameters for a binary choice model under uncertainty," CeMMAP working papers 14/13, Institute for Fiscal Studies.
    3. Le‐Yu Chen & Sokbae Lee & Myung Jae Sung, 2014. "Maximum score estimation with nonparametrically generated regressors," Econometrics Journal, Royal Economic Society, vol. 17(3), pages 271-300, October.
    4. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2012. "n-uniformly consistent density estimation in nonparametric regression models," Journal of Econometrics, Elsevier, vol. 167(2), pages 305-316.
    5. Jacho-Chávez, David & Lewbel, Arthur & Linton, Oliver, 2010. "Identification and nonparametric estimation of a transformed additively separable model," Journal of Econometrics, Elsevier, vol. 156(2), pages 392-407, June.
    6. Lewbel, Arthur, 2000. "Identification Of The Binary Choice Model With Misclassification," Econometric Theory, Cambridge University Press, vol. 16(4), pages 603-609, August.
    7. Su, Liangjun & Lu, Xun, 2013. "Nonparametric dynamic panel data models: Kernel estimation and specification testing," Journal of Econometrics, Elsevier, vol. 176(2), pages 112-133.
    8. Escanciano, Juan Carlos & Jacho-Chávez, David T. & Lewbel, Arthur, 2014. "Uniform convergence of weighted sums of non and semiparametric residuals for estimation and testing," Journal of Econometrics, Elsevier, vol. 178(P3), pages 426-443.
    9. Su, Liangjun & White, Halbert, 2014. "Testing conditional independence via empirical likelihood," Journal of Econometrics, Elsevier, vol. 182(1), pages 27-44.
    10. Eric Auerbach, 2019. "Identification and Estimation of a Partially Linear Regression Model using Network Data," Papers 1903.09679, arXiv.org, revised Jun 2021.
    11. Banerjee, Anurag N., 2002. "A method of estimating the average derivative: the multivariate case," Discussion Paper Series In Economics And Econometrics 0215, Economics Division, School of Social Sciences, University of Southampton.
    12. Banerjee, Anurag N., 2002. "A method of estimating the average derivative: the multivariate case," Discussion Paper Series In Economics And Econometrics 215, Economics Division, School of Social Sciences, University of Southampton.
    13. Elia Lapenta, 2022. "A Bootstrap Specification Test for Semiparametric Models with Generated Regressors," Papers 2212.11112, arXiv.org, revised Oct 2023.
    14. Joris Pinkse, 2000. "Feasible Multivariate Nonparametric Estimation Using Weak Separability," Econometric Society World Congress 2000 Contributed Papers 1241, Econometric Society.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:13:y:1997:i:01:p:3-31_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.