IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v12y1996i02p347-359_00.html
   My bibliography  Save this article

Stochastic Equicontinuity for Unbounded Dependent Heterogeneous Arrays

Author

Listed:
  • Hansen, Bruce E.

Abstract

This paper establishes stochastic equicontinuity for classes of mixingales. Attention is restricted to Lipschitz-continuous parametric functions. Unlike some other empirical process theory for dependent data, our results do not require bounded functions, stationary processes, or restrictive dependence conditions. Applications are given to martingale difference arrays, strong mixing arrays, and near-epoch dependent arrays.

Suggested Citation

  • Hansen, Bruce E., 1996. "Stochastic Equicontinuity for Unbounded Dependent Heterogeneous Arrays," Econometric Theory, Cambridge University Press, vol. 12(2), pages 347-359, June.
  • Handle: RePEc:cup:etheor:v:12:y:1996:i:02:p:347-359_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466600006629/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    2. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    3. Andrews, Donald W. K., 1991. "An empirical process central limit theorem for dependent non-identically distributed random variables," Journal of Multivariate Analysis, Elsevier, vol. 38(2), pages 187-203, August.
    4. Bierens, Herman J, 1990. "A Consistent Conditional Moment Test of Functional Form," Econometrica, Econometric Society, vol. 58(6), pages 1443-1458, November.
    5. Donald W.K. Andrews, 1992. "An Introduction to Econometric Applications of Functional Limit Theory for Dependent Random Variables," Cowles Foundation Discussion Papers 1020, Cowles Foundation for Research in Economics, Yale University.
    6. Andrews, Donald W.K., 1988. "Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables," Econometric Theory, Cambridge University Press, vol. 4(3), pages 458-467, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Wang, 2002. "Consistent testing for stochastic dominance: a subsampling approach," CeMMAP working papers 03/02, Institute for Fiscal Studies.
    2. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    3. Kemp, Gordon C.R. & Santos Silva, J.M.C., 2012. "Regression towards the mode," Journal of Econometrics, Elsevier, vol. 170(1), pages 92-101.
    4. Odendahl, Florens & Rossi, Barbara & Sekhposyan, Tatevik, 2023. "Evaluating forecast performance with state dependence," Journal of Econometrics, Elsevier, vol. 237(2).
    5. Jia Li & Dacheng Xiu, 2016. "Generalized Method of Integrated Moments for High‐Frequency Data," Econometrica, Econometric Society, vol. 84(4), pages 1613-1633, July.
    6. Liangjun Su & Zhenlin Yang, 2007. "Instrumental Variable Quantile Estimation of Spatial Autoregressive Models," Development Economics Working Papers 22476, East Asian Bureau of Economic Research.
    7. Arie Preminger & David Wettstein, 2005. "Using the Penalized Likelihood Method for Model Selection with Nuisance Parameters Present only under the Alternative: An Application to Switching Regression Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 715-741, September.
    8. Jin, Sainan & Corradi, Valentina & Swanson, Norman R., 2017. "Robust Forecast Comparison," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1306-1351, December.
    9. Corradi, Valentina & Fernandez, Andres & Swanson, Norman R., 2009. "Information in the Revision Process of Real-Time Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 455-467.
    10. Shimotsu, Katsumi & Phillips, Peter C B, 2002. "Exact Local Whittle Estimation of Fractional Integration," Economics Discussion Papers 8838, University of Essex, Department of Economics.
    11. Kuersteiner, Guido M., 2019. "Invariance principles for dependent processes indexed by Besov classes with an application to a Hausman test for linearity," Journal of Econometrics, Elsevier, vol. 211(1), pages 243-261.
    12. James H. Stock & Jonathan Wright, 1996. "Asymptotics for GMM Estimators with Weak Instruments," NBER Technical Working Papers 0198, National Bureau of Economic Research, Inc.
    13. Donald W. K. Andrews & Xu Cheng, 2012. "Estimation and Inference With Weak, Semi‐Strong, and Strong Identification," Econometrica, Econometric Society, vol. 80(5), pages 2153-2211, September.
    14. Sander Barendse, 2017. "Interquantile Expectation Regression," Tinbergen Institute Discussion Papers 17-034/III, Tinbergen Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corradi, Valentina & Fernandez, Andres & Swanson, Norman R., 2009. "Information in the Revision Process of Real-Time Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 455-467.
    2. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    3. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2017. "Correction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 883-883, April.
    4. Sakata, Shinichi & White, Halbert, 2001. "S-estimation of nonlinear regression models with dependent and heterogeneous observations," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 5-72, July.
    5. Odendahl, Florens & Rossi, Barbara & Sekhposyan, Tatevik, 2023. "Evaluating forecast performance with state dependence," Journal of Econometrics, Elsevier, vol. 237(2).
    6. Jonathan B. Hill, 2004. "Consistent Model Specification Tests Against Smooth Transition Alternatives," Econometrics 0402004, University Library of Munich, Germany, revised 05 Aug 2005.
    7. Donald W.K. Andrews, 1992. "An Introduction to Econometric Applications of Functional Limit Theory for Dependent Random Variables," Cowles Foundation Discussion Papers 1020, Cowles Foundation for Research in Economics, Yale University.
    8. Corradi, Valentina & Swanson, Norman R., 2002. "A consistent test for nonlinear out of sample predictive accuracy," Journal of Econometrics, Elsevier, vol. 110(2), pages 353-381, October.
    9. Jonathan B. Hill, 2004. "Consistent LM-Tests for Linearity Against Compound Smooth Transition Alternatives," Econometric Society 2004 North American Summer Meetings 42, Econometric Society.
    10. Candelon, Bertrand & Lieb, Lenard, 2013. "Fiscal policy in good and bad times," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2679-2694.
    11. Albert J.F. Yang & William N. Trumbull & Chin Wei Yang & Bwo‐Nung Huang, 2011. "On The Relationship Between Military Expenditure, Threat, And Economic Growth: A Nonlinear Approach," Defence and Peace Economics, Taylor & Francis Journals, vol. 22(4), pages 449-457, April.
    12. Franses, Ph.H.B.F. & van Dijk, D.J.C., 2002. "A simple test for PPP among traded goods," Econometric Institute Research Papers EI 2002-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Dang, Viet Anh & Kim, Minjoo & Shin, Yongcheol, 2014. "Asymmetric adjustment toward optimal capital structure: Evidence from a crisis," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 226-242.
    14. Christoph Rothe & Philipp Sibbertsen, 2006. "Phillips-Perron-type unit root tests in the nonlinear ESTAR framework," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(3), pages 439-456, September.
    15. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    16. Chung‐Hua Shen & Hsing‐Hua Hsu, 2022. "The determinants of Asian banking crises—Application of the panel threshold logit model," International Review of Finance, International Review of Finance Ltd., vol. 22(1), pages 248-277, March.
    17. Lahiani, A. & Scaillet, O., 2009. "Testing for threshold effect in ARFIMA models: Application to US unemployment rate data," International Journal of Forecasting, Elsevier, vol. 25(2), pages 418-428.
    18. Munehisa Kasuya, 2003. "Regime-Switching Approach to Monetary Policy Effects: Empirical Studies using a Smooth Transition Vector Autoregressive Model," Bank of Japan Working Paper Series Research and Statistics D, Bank of Japan.
    19. Che, Chou Ming, 2013. "Panel threshold analysis of Taiwan's outbound visitors," Economic Modelling, Elsevier, vol. 33(C), pages 787-793.
    20. Öğünç, Fethi & Akdoğan, Kurmaş & Başer, Selen & Chadwick, Meltem Gülenay & Ertuğ, Dilara & Hülagü, Timur & Kösem, Sevim & Özmen, Mustafa Utku & Tekatlı, Necati, 2013. "Short-term inflation forecasting models for Turkey and a forecast combination analysis," Economic Modelling, Elsevier, vol. 33(C), pages 312-325.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:12:y:1996:i:02:p:347-359_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.