IDEAS home Printed from https://ideas.repec.org/a/cup/bracjl/v29y2024ip-_20.html
   My bibliography  Save this article

Time series analysis of GSS bonds Part 2 – further univariate analysis of S&P Green Bond Index

Author

Listed:
  • Dey, Debashish

Abstract

The popularity of green, social and sustainability-linked bonds (GSS bonds) continues to rise, with circa US$939 billion of such bonds issued globally in 2023. Given the rising popularity of ESG-related investment solutions, their relatively recent emergence, and limited research in this field, continued investigation is essential. Extending non-traditional techniques such as neural networks to these fields creates a good blend of innovation and potential. This paper follows on from our initial publication, where we aim to replicate the S&P Green Bond Index (i.e. this is a time series problem) over a period using non-traditional techniques (neural networks) predicting 1 day ahead. We take a novel approach of applying an N-BEATS model architecture. N-BEATS is a complex feedforward neural network architecture, consisting of basic building blocks and stacks, introducing the novel doubly residual stacking of backcasts and forecasts. In this paper, we also revisit the neural network architectures from our initial publication, which include DNNs, CNNs, GRUs and LSTMs. We continue the univariate time series problem, increasing the data input window from 1 day to 2 and 5 days respectively, whilst still aiming to predict 1 day ahead.

Suggested Citation

  • Dey, Debashish, 2024. "Time series analysis of GSS bonds Part 2 – further univariate analysis of S&P Green Bond Index," British Actuarial Journal, Cambridge University Press, vol. 29, pages 1-1, January.
  • Handle: RePEc:cup:bracjl:v:29:y:2024:i::p:-_20
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1357321724000217/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:bracjl:v:29:y:2024:i::p:-_20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/baj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.