IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v9y1977i1-2p125-138_01.html
   My bibliography  Save this article

On Optimal Cancellation of Policies

Author

Listed:
  • Gerber, Hans U.

Abstract

One of the basic problems in life is: Given information (from the past), make decisions (that will affect the future). One of the classical actuarial examples is the adaptive ratemaking (or credibility) procedures; here the premium of a given risk is sequentially adjusted, taking into account the claims experience available when the decisions are made.In some cases, the rates are fixed and the premiums cannot be adjusted. Then the actuary faces the question: Should a given risk be underwritten in the first place, and if yes, what is the criterion (in terms of claims performance) for cancellation of the policy at a later time?Recently, Cozzolino and Freifelder [6] developed a model in an attempt to answer these questions. They assumed a discrete time, finite horizon, Poisson model. While the results lend themselves to straightforward numerical evaluation, their analytical form is not too attractive. Here we shall present a continuous time, infinite horizon, diffusion model. At the expense of being somewhat less realistic, this model is very appealing from an analytical point of view.Mathematically, the cancellation of policies amounts to an optimal stopping problem, see [8], [4], or chapter 13 in [7], and (more generally) should be viewed within the framework of discounted dynamic programming [1], [2].

Suggested Citation

  • Gerber, Hans U., 1977. "On Optimal Cancellation of Policies," ASTIN Bulletin, Cambridge University Press, vol. 9(1-2), pages 125-138, January.
  • Handle: RePEc:cup:astinb:v:9:y:1977:i:1-2:p:125-138_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100011454/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szölgyenyi Michaela, 2015. "Dividend maximization in a hidden Markov switching model," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 143-158, December.
    2. Michaela Szolgyenyi, 2016. "Dividend maximization in a hidden Markov switching model," Papers 1602.04656, arXiv.org.
    3. Gunther Leobacher & Michaela Szolgyenyi & Stefan Thonhauser, 2016. "Bayesian Dividend Optimization and Finite Time Ruin Probabilities," Papers 1602.04660, arXiv.org.
    4. Bjarne Højgaard & Michael Taksar, 2004. "Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 315-327.
    5. Asmussen, Soren & Taksar, Michael, 1997. "Controlled diffusion models for optimal dividend pay-out," Insurance: Mathematics and Economics, Elsevier, vol. 20(1), pages 1-15, June.
    6. Cohen, Albert, 2010. "Examples of optimal prediction in the infinite horizon case," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 950-957, June.
    7. Albert Cohen, 2018. "Editorial: A Celebration of the Ties That Bind Us: Connections between Actuarial Science and Mathematical Finance," Risks, MDPI, vol. 6(1), pages 1-3, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:9:y:1977:i:1-2:p:125-138_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.