IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v9y1977i03p281-289_00.html
   My bibliography  Save this article

On The Approximation of the Total Amount of Claims

Author

Listed:
  • Pentikäinen, T.

Abstract

Several “short cut” methods exist to approximate the total amount of claims ( = χ) of an insurance collective. The classical one is the normal approximationwhere and σx are the mean value and standard deviation of x. Φ is the normal distribution function.It is well-known that the normal approximation gives acceptable accuracy only when the volume of risk business is fairly large and the distribution of the amounts of the individual claims is not “too dangerous”, i.e. not too heterogeneous (cf. fig. 2).One way to improve the normal approximation is the so called NP-method, which provides for the standardized variable a correction Δzwhereis the skewness of the distribution F(χ). Another variant (NP3) of the NP-method also makes use of the moment μ4, but, in the following, we limit our discussion mainly to the variant (2) (= NP2).If Δz is small, a simpler formulais available (cf. fig. 2).Another approximation was introduced by Bohman and Esscher (1963). It is based on the incomplete gamma functionwhere Experiments have been made with both formulae (2) and (4); they have been applied to various F functions, from which the exact (or at least controlled) values are otherwise known. It has been proved that the accuracy is satisfactory provided that the distribution F is not very “dangerous”.

Suggested Citation

  • Pentikäinen, T., 1977. "On The Approximation of the Total Amount of Claims," ASTIN Bulletin, Cambridge University Press, vol. 9(3), pages 281-289, December.
  • Handle: RePEc:cup:astinb:v:9:y:1977:i:03:p:281-289_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100006218/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:9:y:1977:i:03:p:281-289_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.