IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v8y1975i03p359-363_01.html
   My bibliography  Save this article

NP-Technique As A Tool In Decision Making

Author

Listed:
  • Pesonen, Erkki

Abstract

It is likely that in the future applications of actuarial methods to the decision making in non-life companies will more and more relate to the utility concept as was proposed by K. Borch [1] about fifteen years ago. In this connection it will be important to have workable numerical methods. The calculation of the distribution function of the profit is an unavoidable problem from a practical point of view. Even if it is possible to compute this function today accurately with computers by using the ingenious technique developed by H. Bohman [2], integrals become very laborious when applied to the decision making procedure based on utility concepts. This paper intends to show that the NP-technique,—proposed for the first time by L. Kauppi and P. Ojantakanen in actuarial science [3]—, is particularly suitable in integrals needed for utility calculations.LetF(x) be the distribution function of the total amount of claims and let its mean, standard deviation, skewness and kurtosis be respectively m, σ, γ1 and γ2. The NP-technique uses the system of equationswhere Φ(y) is the standardized normal distribution function. If the parameters m, σ, γ1 and γ2 and F(x) are known, y is directly found from the tables of the normal distribution function, and thereafter the second equation directly gives the value of x. If, vice versa, x and the above parameters are known, F(x) is obtained by solving y from the second equation (1), or, more practically, by using the converted NP-expansion instead of (i), i.e. [4]:where Sometimes it is sufficient to use short forms of the formulae (1) and (2), obtained by omitting the terms in the brackets. If these rougher approximations are used, the estimation of the kurtosis γ2 remains unnecessary.

Suggested Citation

  • Pesonen, Erkki, 1975. "NP-Technique As A Tool In Decision Making," ASTIN Bulletin, Cambridge University Press, vol. 8(3), pages 359-363, September.
  • Handle: RePEc:cup:astinb:v:8:y:1975:i:03:p:359-363_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100011284/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:8:y:1975:i:03:p:359-363_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.