IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v6y1971i02p129-133_01.html
   My bibliography  Save this article

On the Calculation of the Ruin Probability for a finite time Period

Author

Listed:
  • Beard, R. E.

Abstract

In many risk theoretical questions a central problem is the numerical evaluation of a convolution integral and much effort has been devoted over the years to mathematical and computational aspects. The paper presented to this colloquium by O. Thorin shows the subject to be topical but the present note stems from a recent paper by H. L. Seal, “Simulation of the ruin potential of non-life insurance companies”, published in the Transactions of the Society of Actuaries, Volume XXI page 563.In this paper, amongst other topics, Seal has presented some simulations of ruin probabilities over a finite time interval. Some years ago (Journal Institute of Actuaries Students' Society, Volume 15, 1959). I pointed out that the form of ruin probability could be expressed as a successive product of values of a distribution function. To my knowledge no one has attempted to see if this product form was capable of development and the numerical values in Seal's paper prompted me to spend a little time on the problem. In the time I had available it has not been possible to do more than experiment, but the conclusions reached may be of interest to other workers in this field. They showed that calculation is feasible but laborious. However, the knowledge that it can be done may suggest methods of improving the techniques.Seal's first simulation example is the calculation of ruin probabilities when the distribution of the interval of time between the claims is negative exponential and the individual claim distribution is also negative exponential. Instead of following Seal's method we can determine the “gain per interval” and find that if λ is the security loading the frequency function for the gain z isi.e. a Laplace distribution.

Suggested Citation

  • Beard, R. E., 1971. "On the Calculation of the Ruin Probability for a finite time Period," ASTIN Bulletin, Cambridge University Press, vol. 6(2), pages 129-133, December.
  • Handle: RePEc:cup:astinb:v:6:y:1971:i:02:p:129-133_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100010850/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:6:y:1971:i:02:p:129-133_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.