IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v53y2023i3p580-595_4.html
   My bibliography  Save this article

A hybrid data mining framework for variable annuity portfolio valuation

Author

Listed:
  • Gweon, Hyukjun
  • Li, Shu

Abstract

A variable annuity is a modern life insurance product that offers its policyholders participation in investment with various guarantees. To address the computational challenge of valuing large portfolios of variable annuity contracts, several data mining frameworks based on statistical learning have been proposed in the past decade. Existing methods utilize regression modeling to predict the market value of most contracts. Despite the efficiency of those methods, a regression model fitted to a small amount of data produces substantial prediction errors, and thus, it is challenging to rely on existing frameworks when highly accurate valuation results are desired or required. In this paper, we propose a novel hybrid framework that effectively chooses and assesses easy-to-predict contracts using the random forest model while leaving hard-to-predict contracts for the Monte Carlo simulation. The effectiveness of the hybrid approach is illustrated with an experimental study.

Suggested Citation

  • Gweon, Hyukjun & Li, Shu, 2023. "A hybrid data mining framework for variable annuity portfolio valuation," ASTIN Bulletin, Cambridge University Press, vol. 53(3), pages 580-595, September.
  • Handle: RePEc:cup:astinb:v:53:y:2023:i:3:p:580-595_4
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036123000260/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:53:y:2023:i:3:p:580-595_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.