IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v53y2023i2p443-465_12.html
   My bibliography  Save this article

Worst-case moments under partial ambiguity

Author

Listed:
  • Tang, Qihe
  • Yang, Yunshen

Abstract

The model uncertainty issue is pervasive in virtually all applied fields but especially critical in insurance and finance. To hedge against the uncertainty of the underlying probability distribution, which we refer to as ambiguity, the worst case is often considered in quantifying the underlying risk. However, this worst-case treatment often yields results that are overly conservative. We argue that, in most practical situations, a generic risk is realized from multiple scenarios and the risk in some ordinary scenarios may be subject to negligible ambiguity so that it is safe to trust the reference distributions. Hence, we only need to consider the worst case in the other scenarios where ambiguity is significant. We implement this idea in the study of the worst-case moments of a risk in the hope to alleviate the over-conservativeness issue. Note that the ambiguity in our consideration exists in both the scenario indicator and the risk in the corresponding scenario, leading to a two-fold ambiguity issue. We employ the Wasserstein distance to construct an ambiguity ball. Then, we disentangle the ambiguity along the scenario indicator and the risk in the corresponding scenario, so that we convert the two-fold optimization problem into two one-fold problems. Our main result is a closed-form worst-case moment estimate. Our numerical studies illustrate that the consideration of partial ambiguity indeed greatly alleviates the over-conservativeness issue.

Suggested Citation

  • Tang, Qihe & Yang, Yunshen, 2023. "Worst-case moments under partial ambiguity," ASTIN Bulletin, Cambridge University Press, vol. 53(2), pages 443-465, May.
  • Handle: RePEc:cup:astinb:v:53:y:2023:i:2:p:443-465_12
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S051503612300003X/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Cai & Zhanyi Jiao & Tiantian Mao, 2024. "Worst-case values of target semi-variances with applications to robust portfolio selection," Papers 2410.01732, arXiv.org, revised Oct 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:53:y:2023:i:2:p:443-465_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.