IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v53y2023i1p149-183_8.html
   My bibliography  Save this article

Portfolio performance under benchmarking relative loss and portfolio insurance: From omega ratio to loss aversion

Author

Listed:
  • Ng, Tak Wa
  • Nguyen, Thai

Abstract

We study an optimal investment problem under a joint limited expected relative loss and portfolio insurance constraint with a general random benchmark. By making use of a static Lagrangian method in a complete market setting, the optimal wealth and investment strategy can be fully determined along with the existence and uniqueness of the Lagrangian multipliers. Our numerical demonstration for various commonly used random benchmarks shows a trade-off between the portfolio outperformance and underperformance relative to the benchmark, which may not be captured by the widely used Omega ratio and its utility-transformed version, reflecting the impact of the benchmarking loss constraint. Furthermore, we develop a new portfolio performance measurement indicator that incorporates the agent’s utility loss aversion relative to the benchmark via solving an equivalent optimal asset allocation problem with a benchmark-reference-based preference. We show that the expected utility performance is well depicted by looking at this new portfolio performance ratio, suggesting a more suitable portfolio performance measurement under a limited loss constraint relative to a possibly random benchmark.

Suggested Citation

  • Ng, Tak Wa & Nguyen, Thai, 2023. "Portfolio performance under benchmarking relative loss and portfolio insurance: From omega ratio to loss aversion," ASTIN Bulletin, Cambridge University Press, vol. 53(1), pages 149-183, January.
  • Handle: RePEc:cup:astinb:v:53:y:2023:i:1:p:149-183_8
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036122000265/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:53:y:2023:i:1:p:149-183_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.