IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v52y2022i2p393-416_2.html
   My bibliography  Save this article

A New Multivariate Zero-Inflated Hurdle Model With Applications In Automobile Insurance

Author

Listed:
  • Zhang, Pengcheng
  • Pitt, David
  • Wu, Xueyuan

Abstract

The fact that a large proportion of insurance policyholders make no claims during a one-year period highlights the importance of zero-inflated count models when analyzing the frequency of insurance claims. There is a vast literature focused on the univariate case of zero-inflated count models, while work in the area of multivariate models is considerably less advanced. Given that insurance companies write multiple lines of insurance business, where the claim counts on these lines of business are often correlated, there is a strong incentive to analyze multivariate claim count models. Motivated by the idea of Liu and Tian (Computational Statistics and Data Analysis, 83, 200–222; 2015), we develop a multivariate zero-inflated hurdle model to describe multivariate count data with extra zeros. This generalization offers more flexibility in modeling the behavior of individual claim counts while also incorporating a correlation structure between claim counts for different lines of insurance business. We develop an application of the expectation–maximization (EM) algorithm to enable the statistical inference necessary to estimate the parameters associated with our model. Our model is then applied to an automobile insurance portfolio from a major insurance company in Spain. We demonstrate that the model performance for the multivariate zero-inflated hurdle model is superior when compared to several alternatives.

Suggested Citation

  • Zhang, Pengcheng & Pitt, David & Wu, Xueyuan, 2022. "A New Multivariate Zero-Inflated Hurdle Model With Applications In Automobile Insurance," ASTIN Bulletin, Cambridge University Press, vol. 52(2), pages 393-416, May.
  • Handle: RePEc:cup:astinb:v:52:y:2022:i:2:p:393-416_2
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036121000398/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bladt, Martin & Yslas, Jorge, 2023. "Robust claim frequency modeling through phase-type mixture-of-experts regression," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 1-22.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:52:y:2022:i:2:p:393-416_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.