IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v50y2020i3p959-999_10.html
   My bibliography  Save this article

Risk-Based Capital For Variable Annuity Under Stochastic Interest Rate

Author

Listed:
  • Wang, JinDong
  • Xu, Wei

Abstract

Interest rate is one of the main risks for the liability of the variable annuity (VA) due to its long maturity. However, most existing studies on the risk measures of the VA assume a constant interest rate. In this paper, we propose an efficient two-dimensional willow tree method to compute the liability distribution of the VA with the joint dynamics of the mutual fund and interest rate. The risk measures can then be computed by the backward induction on the tree structure. We also analyze the sensitivity and impact on the risk measures with regard to the market model parameters, contract attributes, and monetary policy changes. It illustrates that the liability of the VA is determined by the long-term interest rate whose increment leads to a decrease in the liability. The positive correlation between the interest rate and mutual fund generates a fat-tailed liability distribution. Moreover, the monetary policy change has a bigger impact on the long-term VAs than the short-term contracts.

Suggested Citation

  • Wang, JinDong & Xu, Wei, 2020. "Risk-Based Capital For Variable Annuity Under Stochastic Interest Rate," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 959-999, September.
  • Handle: RePEc:cup:astinb:v:50:y:2020:i:3:p:959-999_10
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036120000203/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Areski Cousin & Ying Jiao & Christian y Robert & Olivier David Zerbib, 2021. "Optimal asset allocation subject to withdrawal risk and solvency constraints," Working Papers hal-03244380, HAL.
    2. Areski Cousin & Ying Jiao & Christian Yann Robert & Olivier David Zerbib, 2022. "Optimal Asset Allocation Subject to Withdrawal Risk and Solvency Constraints," Risks, MDPI, vol. 10(1), pages 1-28, January.
    3. Xu, Wei & Šević, Aleksandar & Šević, Željko, 2022. "Implied volatility surface construction for commodity futures options traded in China," Research in International Business and Finance, Elsevier, vol. 61(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:50:y:2020:i:3:p:959-999_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.