IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v50y2020i3p743-776_3.html
   My bibliography  Save this article

Joint Optimization Of Transition Rules And The Premium Scale In A Bonus-Malus System

Author

Listed:
  • Ágoston, Kolos Csaba
  • Gyetvai, Márton

Abstract

Bonus-malus systems (BMSs) are widely used in actuarial sciences. These systems are applied by insurance companies to distinguish the policyholders by their risks. The most known application of BMS is in automobile third-party liability insurance. In BMS, there are several classes, and the premium of a policyholder depends on the class he/she is assigned to. The classification of policyholders over the periods of the insurance depends on the transition rules. In general, optimization of these systems involves the calculation of an appropriate premium scale considering the number of classes and transition rules as external parameters. Usually, the stationary distribution is used in the optimization process. In this article, we present a mixed integer linear programming (MILP) formulation for determining the premium scale and the transition rules. We present two versions of the model, one with the calculation of stationary probabilities and another with the consideration of multiple periods of the insurance. Furthermore, numerical examples will also be given to demonstrate that the MILP technique is suitable for handling existing BMSs.

Suggested Citation

  • Ágoston, Kolos Csaba & Gyetvai, Márton, 2020. "Joint Optimization Of Transition Rules And The Premium Scale In A Bonus-Malus System," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 743-776, September.
  • Handle: RePEc:cup:astinb:v:50:y:2020:i:3:p:743-776_3
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036120000276/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhiti Osatakul & Xueyuan Wu, 2021. "Discrete-Time Risk Models with Claim Correlated Premiums in a Markovian Environment," Risks, MDPI, vol. 9(1), pages 1-23, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:50:y:2020:i:3:p:743-776_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.