IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v50y2020i3p1001-1035_11.html
   My bibliography  Save this article

Taxation Of A Gmwb Variable Annuity In A Stochastic Interest Rate Model

Author

Listed:
  • Molent, Andrea

Abstract

Modeling taxation of Variable Annuities has been frequently neglected, but accounting for it can significantly improve the explanation of the withdrawal dynamics and lead to a better modeling of the financial cost of these insurance products. The importance of including a model for taxation has first been observed by Moenig and Bauer (2016) while considering a Guaranteed Minimum Withdrawal Benefit (GMWB) Variable Annuity. In particular, they consider the simple Black–Scholes dynamics to describe the underlying security. Nevertheless, GMWB are long-term products, and thus accounting for stochastic interest rate has relevant effects on both the financial evaluation and the policyholder behavior, as observed by Goudenège et al. (2018). In this paper, we investigate the outcomes of these two elements together on GMWB evaluation. To this aim, we develop a numerical framework which allows one to efficiently compute the fair value of a policy. Numerical results show that accounting for both taxation and stochastic interest rate has a determinant impact on the withdrawal strategy and on the cost of GMWB contracts. In addition, it can explain why these products are so popular with people looking for a protected form of investment for retirement.

Suggested Citation

  • Molent, Andrea, 2020. "Taxation Of A Gmwb Variable Annuity In A Stochastic Interest Rate Model," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 1001-1035, September.
  • Handle: RePEc:cup:astinb:v:50:y:2020:i:3:p:1001-1035_11
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S051503612000029X/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaowen Lu & Duy-Minh Dang, 2023. "A semi-Lagrangian $\epsilon$-monotone Fourier method for continuous withdrawal GMWBs under jump-diffusion with stochastic interest rate," Papers 2310.00606, arXiv.org.
    2. Tetyana Calinescu & Ganna Likhonosova & Olena Zelenko, 2022. "International Financial Activities: Accounting, Taxation And Insurance," Baltic Journal of Economic Studies, Publishing house "Baltija Publishing", vol. 8(2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:50:y:2020:i:3:p:1001-1035_11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.