IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v50y2020i2p647-673_11.html
   My bibliography  Save this article

Weighted Comonotonic Risk Sharing Under Heterogeneous Beliefs

Author

Listed:
  • Liu, Haiyan

Abstract

We study a weighted comonotonic risk-sharing problem among multiple agents with distortion risk measures under heterogeneous beliefs. The explicit forms of optimal allocations are obtained, which are Pareto-optimal. A necessary and sufficient condition is given to ensure the uniqueness of the optimal allocation, and sufficient conditions are given to obtain an optimal allocation of the form of excess of loss or full insurance. The optimal allocation may satisfy individual rationality depending on the choice of the weight. When the distortion risk measure is value at risk or tail value at risk, an optimal allocation is generally of the excess-of-loss form. The numerical examples suggest that a risk is more likely to be shared among agents with heterogeneous beliefs, and the introduction of the weight enables us to prioritize some agents as part of a group sharing a risk.

Suggested Citation

  • Liu, Haiyan, 2020. "Weighted Comonotonic Risk Sharing Under Heterogeneous Beliefs," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 647-673, May.
  • Handle: RePEc:cup:astinb:v:50:y:2020:i:2:p:647-673_11
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036120000069/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boonen, Tim J. & Jiang, Wenjun, 2022. "Bilateral risk sharing in a comonotone market with rank-dependent utilities," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 361-378.
    2. Jean-Gabriel Lauzier & Liyuan Lin & Ruodu Wang, 2023. "Risk sharing, measuring variability, and distortion riskmetrics," Papers 2302.04034, arXiv.org.
    3. Mario Ghossoub & Michael B. Zhu & Wing Fung Chong, 2024. "Pareto-Optimal Peer-to-Peer Risk Sharing with Robust Distortion Risk Measures," Papers 2409.05103, arXiv.org.
    4. Peng Liu & Andreas Tsanakas & Yunran Wei, 2024. "Risk sharing with Lambda value at risk under heterogeneous beliefs," Papers 2408.03147, arXiv.org, revised Sep 2024.
    5. Felix-Benedikt Liebrich, 2021. "Risk sharing under heterogeneous beliefs without convexity," Papers 2108.05791, arXiv.org, revised May 2022.
    6. Liu, Haiyan, 2024. "Worst-case risk with unspecified risk preferences," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 235-248.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:50:y:2020:i:2:p:647-673_11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.