IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v50y2020i2p357-379_2.html
   My bibliography  Save this article

Forecasting Multiple Functional Time Series In A Group Structure: An Application To Mortality

Author

Listed:
  • Shang, Han Lin
  • Haberman, Steven

Abstract

When modelling subnational mortality rates, we should consider three features: (1) how to incorporate any possible correlation among subpopulations to potentially improve forecast accuracy through multi-population joint modelling; (2) how to reconcile subnational mortality forecasts so that they aggregate adequately across various levels of a group structure; (3) among the forecast reconciliation methods, how to combine their forecasts to achieve improved forecast accuracy. To address these issues, we introduce an extension of grouped univariate functional time-series method. We first consider a multivariate functional time-series method to jointly forecast multiple related series. We then evaluate the impact and benefit of using forecast combinations among the forecast reconciliation methods. Using the Japanese regional age-specific mortality rates, we investigate 1–15-step-ahead point and interval forecast accuracies of our proposed extension and make recommendations.

Suggested Citation

  • Shang, Han Lin & Haberman, Steven, 2020. "Forecasting Multiple Functional Time Series In A Group Structure: An Application To Mortality," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 357-379, May.
  • Handle: RePEc:cup:astinb:v:50:y:2020:i:2:p:357-379_2
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036120000033/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han Lin Shang & Yang Yang, 2021. "Forecasting Australian subnational age-specific mortality rates," Journal of Population Research, Springer, vol. 38(1), pages 1-24, March.
    2. Ufuk Beyaztas & Hanlin Shang, 2022. "Machine-Learning-Based Functional Time Series Forecasting: Application to Age-Specific Mortality Rates," Forecasting, MDPI, vol. 4(1), pages 1-15, March.
    3. Francesca Perla & Salvatore Scognamiglio, 2023. "Locally-coherent multi-population mortality modelling via neural networks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 157-176, June.
    4. Li, Hong & Shi, Yanlin, 2021. "Forecasting mortality with international linkages: A global vector-autoregression approach," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 59-75.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:50:y:2020:i:2:p:357-379_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.