IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v50y2020i1p1-24_1.html
   My bibliography  Save this article

Actuarial Applications Of Word Embedding Models

Author

Listed:
  • Lee, Gee Y
  • Manski, Scott
  • Maiti, Tapabrata

Abstract

In insurance analytics, textual descriptions of claims are often discarded, because traditional empirical analyses require numeric descriptor variables. This paper demonstrates how textual data can be easily used in insurance analytics. Using the concept of word similarities, we illustrate how to extract variables from text and incorporate them into claims analyses using standard generalized linear model or generalized additive regression model. This procedure is applied to the Wisconsin Local Government Property Insurance Fund (LGPIF) data, in order to demonstrate how insurance claims management and risk mitigation procedures can be improved. We illustrate two applications. First, we show how the claims classification problem can be solved using textual information. Second, we analyze the relationship between risk metrics and the probability of large losses. We obtain good results for both applications, where short textual descriptions of insurance claims are used for the extraction of features.

Suggested Citation

  • Lee, Gee Y & Manski, Scott & Maiti, Tapabrata, 2020. "Actuarial Applications Of Word Embedding Models," ASTIN Bulletin, Cambridge University Press, vol. 50(1), pages 1-24, January.
  • Handle: RePEc:cup:astinb:v:50:y:2020:i:1:p:1-24_1
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S051503611900028X/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Shuzhe & Zhang, Chuanlong & Hong, Don, 2022. "BERT-based NLP techniques for classification and severity modeling in basic warranty data study," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 57-67.
    2. Kaixu Yang & Tapabrata Maiti, 2022. "Ultrahigh‐dimensional generalized additive model: Unified theory and methods," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 917-942, September.
    3. Gao, Lisa & Shi, Peng, 2022. "Leveraging high-resolution weather information to predict hail damage claims: A spatial point process for replicated point patterns," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 161-179.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:50:y:2020:i:1:p:1-24_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.