IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v48y2018i03p1137-1156_00.html
   My bibliography  Save this article

Compound Poisson Claims Reserving Models: Extensions And Inference

Author

Listed:
  • Meng, Shengwang
  • Gao, Guangyuan

Abstract

We consider compound Poisson claims reserving models applied to the paid claims and to the number of payments run-off triangles. We extend the standard Poisson-gamma assumption to account for over-dispersion in the payment counts and to account for various mean and variance structures in the individual payments. Two generalized linear models are applied consecutively to predict the unpaid claims. A bootstrap is used to estimate the mean squared error of prediction and to simulate the predictive distribution of the unpaid claims. We show that the extended compound Poisson models make reasonable predictions of the unpaid claims.

Suggested Citation

  • Meng, Shengwang & Gao, Guangyuan, 2018. "Compound Poisson Claims Reserving Models: Extensions And Inference," ASTIN Bulletin, Cambridge University Press, vol. 48(3), pages 1137-1156, September.
  • Handle: RePEc:cup:astinb:v:48:y:2018:i:03:p:1137-1156_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036118000120/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duarte-López, Ariel & Pérez-Casany, Marta & Valero, Jordi, 2020. "The Zipf–Poisson-stopped-sum distribution with an application for modeling the degree sequence of social networks," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:48:y:2018:i:03:p:1137-1156_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.