IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v47y2017i02p527-561_00.html
   My bibliography  Save this article

Continuous-Time Semi-Markov Inference Of Biometric Laws Associated With A Long-Term Care Insurance Portfolio

Author

Listed:
  • Biessy, Guillaume

Abstract

Unlike the mortality risk on which actuaries have been working for more than a century, the long-term care (LTC) risk is relatively new and as of today hardly mastered. Semi-Markov processes have been identified as an adequate tool to study this risk. Nevertheless, access to data is limited and the associated literature still scarce. Insurers mainly use discrete time methods directly inspired from the study of mortality in order to build experience tables. Those methods however are not perfectly suited for the study of competing risk situations. This article provides a theoretical framework to estimate biometric laws associated with a LTC insurance portfolio. The presented method relies on a continuous-time semi-Markov model with three states: autonomy, disability and death. The process describing the state of disability is defined through its transition intensities. We provide a formula to infer the mortality of autonomous people from the mortality of the whole portfolio, on which we have more reliable knowledge. We then propose a parametric expression for the remaining intensities of the model. In particular, incidence in LTC is described by a logistic formula. Under the assumption that the disabled population is a mixture of two latent populations with respect to the category of pathology that caused LTC, we show that the resulting intensity of mortality in LTC takes a very peculiar form and depends on time spent in the LTC state. Estimation of parameters relies on the maximum likelihood method. Our parametric approach, while inducing model uncertainty, eliminates issues related to segmentation in age categories, smoothing or extrapolation at higher ages and thus proves very convenient for the practitioner. Finally, we provide an application using data from a real LTC insurance portfolio.

Suggested Citation

  • Biessy, Guillaume, 2017. "Continuous-Time Semi-Markov Inference Of Biometric Laws Associated With A Long-Term Care Insurance Portfolio," ASTIN Bulletin, Cambridge University Press, vol. 47(2), pages 527-561, May.
  • Handle: RePEc:cup:astinb:v:47:y:2017:i:02:p:527-561_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036116000416/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fuino, Michel & Wagner, Joël, 2018. "Long-term care models and dependence probability tables by acuity level: New empirical evidence from Switzerland," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 51-70.
    2. Michel Fuino & Andrey Ugarte Montero & Joël Wagner, 2022. "On the drivers of potential customers' interest in long‐term care insurance: Evidence from Switzerland," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 25(3), pages 271-302, September.
    3. Martin Eling & Omid Ghavibazoo, 2019. "Research on long-term care insurance: status quo and directions for future research," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 44(2), pages 303-356, April.
    4. Chen, An & Fuino, Michel & Sehner, Thorsten & Wagner, Joël, 2022. "Valuation of long-term care options embedded in life annuities," Annals of Actuarial Science, Cambridge University Press, vol. 16(1), pages 68-94, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:47:y:2017:i:02:p:527-561_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.