IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v46y2016i02p431-467_00.html
   My bibliography  Save this article

The Efficient Computation And The Sensitivity Analysis Of Finite-Time Ruin Probabilities And The Estimation Of Risk-Based Regulatory Capital

Author

Listed:
  • Joshi, Mark S.
  • Zhu, Dan

Abstract

Solvency regulations require financial institutions to hold initial capital so that ruin is a rare event. An important practical problem is to estimate the regulatory capital so the ruin probability is at the regulatory level, typically with less than 0.1% over a finite-time horizon. Estimating probabilities of rare events is challenging, since naive estimations via direct simulations of the surplus process is not feasible. In this paper, we present a stratified sampling algorithm for estimating finite-time ruin probabilities. We further introduce a sequence of measure changes to remove the pathwise discontinuities of the estimator, and compute unbiased first and second-order derivative estimates of the finite-time ruin probabilities with respect to both distributional and structural parameters. We then estimate the regulatory capital and its sensitivities. These estimates provide information to insurance companies for meeting prudential regulations as well as designing risk management strategies. Numerical examples are presented for the classical model, the Sparre Andersen model with interest and the periodic risk model with interest to demonstrate the speed and efficacy of our methodology.

Suggested Citation

  • Joshi, Mark S. & Zhu, Dan, 2016. "The Efficient Computation And The Sensitivity Analysis Of Finite-Time Ruin Probabilities And The Estimation Of Risk-Based Regulatory Capital," ASTIN Bulletin, Cambridge University Press, vol. 46(2), pages 431-467, May.
  • Handle: RePEc:cup:astinb:v:46:y:2016:i:02:p:431-467_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036116000052/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingchao Li & Bihao Su & Zhenghong Wei & Ciyu Nie, 2022. "A Multinomial Approximation Approach for the Finite Time Survival Probability Under the Markov-modulated Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2169-2194, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:46:y:2016:i:02:p:431-467_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.