IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v45y2015i01p75-99_00.html
   My bibliography  Save this article

Bayesian Chain Ladder Models

Author

Listed:
  • Taylor, Greg

Abstract

The literature on Bayesian chain ladder models is surveyed. Both Mack and cross-classified forms of the chain ladder are considered. Both cases are examined in the context of error terms distributed according to a member of the exponential dispersion family. Tweedie and over-dispersed Poisson errors follow as special cases. Bayesian cross-classified chain ladder models may randomise row, column or diagonal parameters. Column and diagonal randomisation has been largely absent from the literature until recently. The present paper allows randomisation of row and column parameters. The Bayes estimator, the linear Bayes (credibility) estimator, and the MAP estimator are shown to be identical in the Mack case, and in the cross-classified case provided that the error terms are Tweedie distributed. In the Mack case the variance structure is generalised considerably from the existing literature. In the cross-classified case the model structure differs somewhat from the existing literature, and a comparison is made between the two. MAP estimators for the cross-classified case are often given by implicit equations that require numerical solution. Recursive formulas are given for these in the general case of error terms from the exponential dispersion family. The connection between the cross-classified case and Bornhuetter-Ferguson prediction is explored.

Suggested Citation

  • Taylor, Greg, 2015. "Bayesian Chain Ladder Models," ASTIN Bulletin, Cambridge University Press, vol. 45(1), pages 75-99, January.
  • Handle: RePEc:cup:astinb:v:45:y:2015:i:01:p:75-99_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036114000257/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taylor, Greg, 2019. "A Cape Cod model for the exponential dispersion family," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 126-137.
    2. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2016. "Stochastic loss reserving with dependence: A flexible multivariate Tweedie approach," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 63-78.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:45:y:2015:i:01:p:75-99_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.