IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v43y2013i03p301-322_00.html
   My bibliography  Save this article

Market Value Margin Via Mean–Variance Hedging

Author

Listed:
  • Tsanakas, Andreas
  • Wüthrich, Mario V.
  • Černý, Aleš

Abstract

We use mean–variance hedging in discrete time in order to value an insurance liability. The prediction of the insurance liability is decomposed into claims development results, that is, yearly deteriorations in its conditional expected values until the liability is finally settled. We assume the existence of a tradeable derivative with binary pay-off written on the claims development result and available in each development period. General valuation formulas are stated and, under additional assumptions, these valuation formulas simplify to resemble familiar regulatory cost-of-capital-based formulas. However, adoption of the mean–variance framework improves upon the regulatory approach by allowing for potential calibration to observed market prices, inclusion of other tradeable assets, and consistent extension to multiple periods. Furthermore, it is shown that the hedging strategy can also lead to increased capital efficiency.

Suggested Citation

  • Tsanakas, Andreas & Wüthrich, Mario V. & Černý, Aleš, 2013. "Market Value Margin Via Mean–Variance Hedging," ASTIN Bulletin, Cambridge University Press, vol. 43(3), pages 301-322, September.
  • Handle: RePEc:cup:astinb:v:43:y:2013:i:03:p:301-322_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036113000184/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhaene, Jan & Stassen, Ben & Barigou, Karim & Linders, Daniël & Chen, Ze, 2017. "Fair valuation of insurance liabilities: Merging actuarial judgement and market-consistency," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 14-27.
    2. Chen, Ze & Feng, Runhuan & Li, Hong & Yang, Tianyu, 2024. "Coping with longevity via hedging: Fair dynamic valuation of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 154-169.
    3. Engsner, Hampus & Lindskog, Filip & Thøgersen, Julie, 2023. "Multiple-prior valuation of cash flows subject to capital requirements," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 41-56.
    4. Bauer, Daniel & Zanjani, George, 2021. "Economic capital and RAROC in a dynamic model," Journal of Banking & Finance, Elsevier, vol. 125(C).
    5. Chen, Ze & Chen, Bingzheng & Dhaene, Jan & Yang, Tianyu, 2021. "Fair dynamic valuation of insurance liabilities via convex hedging," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 1-13.
    6. Hampus Engsner & Filip Lindskog & Julie Thoegersen, 2021. "Multiple-prior valuation of cash flows subject to capital requirements," Papers 2109.00306, arXiv.org.
    7. Engsner, Hampus & Lindholm, Mathias & Lindskog, Filip, 2017. "Insurance valuation: A computable multi-period cost-of-capital approach," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 250-264.
    8. van Bilsen, Servaas & Linders, Daniël, 2019. "Affordable and adequate annuities with stable payouts: Fantasy or reality?," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 19-42.
    9. Hampus Engsner & Kristoffer Lindensjö & Filip Lindskog, 2020. "The value of a liability cash flow in discrete time subject to capital requirements," Finance and Stochastics, Springer, vol. 24(1), pages 125-167, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:43:y:2013:i:03:p:301-322_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.