IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v42y2012i01p355-384_00.html
   My bibliography  Save this article

Higher Moments of the Claims Development Result in General Insurance

Author

Listed:
  • Salzmann, Robert
  • Wüthrich, Mario V.
  • Merz, Michael

Abstract

The claims development result (CDR) is one of the major risk drivers in the profit and loss statement of a general insurance company. Therefore, the CDR has become a central object of interest under new solvency regulation. In current practice, simple methods based on the first two moments of the CDR are implemented to find a proxy for the distribution of the CDR. Such approximations based on the first two moments are rather rough and may fail to appropriately describe the shape of the distribution of the CDR. In this paper we provide an analysis of higher moments of the CDR. Within a Bayes chain ladder framework we consider two different models for which it is possible to derive analytical solutions for the higher moments of the CDR. Based on higher moments we can e.g. calculate the skewness and the excess kurtosis of the distribution of the CDR and obtain refined approximations. Moreover, a case study investigates and answers questions raised in IASB.

Suggested Citation

  • Salzmann, Robert & Wüthrich, Mario V. & Merz, Michael, 2012. "Higher Moments of the Claims Development Result in General Insurance," ASTIN Bulletin, Cambridge University Press, vol. 42(1), pages 355-384, May.
  • Handle: RePEc:cup:astinb:v:42:y:2012:i:01:p:355-384_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100001124/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2016. "Stochastic loss reserving with dependence: A flexible multivariate Tweedie approach," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 63-78.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:42:y:2012:i:01:p:355-384_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.