Author
Abstract
In this article we want to motivate and analyse a wide family of reserving models, called linear stochastic reserving methods (LSRMs). The main idea behind them is the assumption that the (conditionally) expected changes of claim properties during a development period are proportional to exposures which depend linearly on the past. This means the discussion about the choice of reserving methods can be based on heuristic reasons about exposures driving the claims development, which in our opinion is much better than a pure philosophic approach. Moreover, the assumptions of LSRMs do not include the independence of accident periods. We will see that many common reserving methods, like the Chain-Ladder-Method, the Bornhuetter-Ferguson-Method and the Complementary-Loss-Ratio-Method, can be interpreted in this way. But using the LSRM framework you can do more. For instance you can couple different triangles via exposures. This leads to reserving methods which look at a whole bundle of triangles at once and use the information of all triangles in order to estimate the future development of each of them. We will present unbiased estimators for the expected ultimate and estimators for the mean squared error of prediction, which may become an integral part of IFRS 4. Moreover, we will look at the one period solvency reserving risk, which already is an important part of Solvency II, and present a corresponding estimator. Finally we will present two examples that illustrate some features of LSRMs.
Suggested Citation
Dahms, René, 2012.
"Linear Stochastic Reserving Methods,"
ASTIN Bulletin, Cambridge University Press, vol. 42(1), pages 1-34, May.
Handle:
RePEc:cup:astinb:v:42:y:2012:i:01:p:1-34_00
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:42:y:2012:i:01:p:1-34_00. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.