IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v40y2010i01p281-306_00.html
   My bibliography  Save this article

On the Upcrossing and Downcrossing Probabilities of a Dual Risk Model With Phase-Type Gains

Author

Listed:
  • Ng, Andrew C.Y.

Abstract

In this paper, we consider the dual of the classical Cramér-Lundberg model when gains follow a phase-type distribution. By using the property of phase-type distribution, two pairs of upcrossing and downcrossing barrier probabilities are derived. Explicit formulas for the expected total discounted dividends until ruin and the Laplace transform of the time of ruin under a variety of dividend strategies can then be obtained without the use of Laplace transforms.

Suggested Citation

  • Ng, Andrew C.Y., 2010. "On the Upcrossing and Downcrossing Probabilities of a Dual Risk Model With Phase-Type Gains," ASTIN Bulletin, Cambridge University Press, vol. 40(1), pages 281-306, May.
  • Handle: RePEc:cup:astinb:v:40:y:2010:i:01:p:281-306_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100000477/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afonso, Lourdes B. & Cardoso, Rui M.R. & Egídio dos Reis, Alfredo D., 2013. "Dividend problems in the dual risk model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 906-918.
    2. Arash Fahim & Lingjiong Zhu, 2016. "Asymptotic Analysis for Optimal Dividends in a Dual Risk Model," Papers 1601.03435, arXiv.org, revised Dec 2022.
    3. Avanzi, Benjamin & Cheung, Eric C.K. & Wong, Bernard & Woo, Jae-Kyung, 2013. "On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 98-113.
    4. Arash Fahim & Lingjiong Zhu, 2015. "Optimal Investment in a Dual Risk Model," Papers 1510.04924, arXiv.org, revised Feb 2023.
    5. Lingjiong Zhu, 2015. "A State-Dependent Dual Risk Model," Papers 1510.03920, arXiv.org, revised Feb 2023.
    6. Benjamin Avanzi & Jos'e-Luis P'erez & Bernard Wong & Kazutoshi Yamazaki, 2016. "On optimal joint reflective and refractive dividend strategies in spectrally positive L\'evy models," Papers 1607.01902, arXiv.org, revised Nov 2016.
    7. Avanzi, Benjamin & Pérez, José-Luis & Wong, Bernard & Yamazaki, Kazutoshi, 2017. "On optimal joint reflective and refractive dividend strategies in spectrally positive Lévy models," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 148-162.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:40:y:2010:i:01:p:281-306_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.