IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v39y2009i02p735-752_00.html
   My bibliography  Save this article

Asymptotics for Operational Risk Quantified with Expected Shortfall

Author

Listed:
  • Biagini, Francesca
  • Ulmer, Sascha

Abstract

In this paper we estimate operational risk by using the convex risk measure Expected Shortfall (ES) and provide an approximation as the confidence level converges to 100% in the univariate case. Then we extend this approach to the multivariate case, where we represent the dependence structure by using a Lévy copula as in Böcker and Klüppelberg (2006) and Böcker and Klüppelberg, C. (2008). We compare our results to the ones obtained in Böcker and Klüppelberg (2006) and (2008) for Operational VaR and discuss their practical relevance.

Suggested Citation

  • Biagini, Francesca & Ulmer, Sascha, 2009. "Asymptotics for Operational Risk Quantified with Expected Shortfall," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 735-752, November.
  • Handle: RePEc:cup:astinb:v:39:y:2009:i:02:p:735-752_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100000337/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grothe, Oliver & Hofert, Marius, 2015. "Construction and sampling of Archimedean and nested Archimedean Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 182-198.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:39:y:2009:i:02:p:735-752_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.