IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v39y2009i02p453-477_00.html
   My bibliography  Save this article

Taylor Approximations for Model Uncertainty within the Tweedie Exponential Dispersion Family

Author

Listed:
  • Alai, Daniel H.
  • Wüthrich, Mario V.

Abstract

The use of generalized linear models (GLM) to estimate claims reserves has become a standard method in insurance. Most frequently, the exponential dispersion family (EDF) is used; see e.g. England, Verrall. We study the so-called Tweedie EDF and test the sensitivity of the claims reserves and their mean square error of predictions (MSEP) over this family. Furthermore, we develop second order Taylor approximations for the claims reserves and the MSEPs for members of the Tweedie family that are difficult to obtain in practice, but are close enough to models for which claims reserves and MSEP estimations are easy to determine. As a result of multiple case studies, we find that claims reserves estimation is relatively insensitive to which distribution is chosen amongst the Tweedie family, in contrast to the MSEP, which varies widely.

Suggested Citation

  • Alai, Daniel H. & Wüthrich, Mario V., 2009. "Taylor Approximations for Model Uncertainty within the Tweedie Exponential Dispersion Family," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 453-477, November.
  • Handle: RePEc:cup:astinb:v:39:y:2009:i:02:p:453-477_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100000209/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    2. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2016. "Stochastic loss reserving with dependence: A flexible multivariate Tweedie approach," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 63-78.
    3. Benjamin Avanzi & Gregory Clive Taylor & Phuong Anh Vu & Bernard Wong, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Papers 2004.06880, arXiv.org.
    4. Denuit, Michel & Trufin, Julien, 2016. "Beyond the Tweedie Reserving Model: The Collective Approach to Loss Development," LIDAM Discussion Papers ISBA 2016030, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:39:y:2009:i:02:p:453-477_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.