IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v37y2007i01p1-34_01.html
   My bibliography  Save this article

Dynamic Pricing of General Insurance in a Competitive Market

Author

Listed:
  • Emms, Paul

Abstract

A model for general insurance pricing is developed which represents a stochastic generalisation of the discrete model proposed by Taylor (1986). This model determines the insurance premium based both on the breakeven premium and the competing premiums offered by the rest of the insurance market. The optimal premium is determined using stochastic optimal control theory for two objective functions in order to examine how the optimal premium strategy changes with the insurer’s objective. Each of these problems can be formulated in terms of a multi-dimensional Bellman equation. In the first problem the optimal insurance premium is calculated when the insurer maximises its expected terminal wealth. In the second, the premium is found if the insurer maximises the expected total discounted utility of wealth where the utility function is nonlinear in the wealth. The solution to both these problems is built-up from simpler optimisation problems. For the terminal wealth problem with constant loss-ratio the optimal premium strategy can be found analytically. For the total wealth problem the optimal relative premium is found to increase with the insurer’s risk aversion which leads to reduced market exposure and lower overall wealth generation.

Suggested Citation

  • Emms, Paul, 2007. "Dynamic Pricing of General Insurance in a Competitive Market," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 1-34, May.
  • Handle: RePEc:cup:astinb:v:37:y:2007:i:01:p:1-34_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100014719/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingzheng Chen & Zongxia Liang & Shunzhi Pang, 2024. "Dynamic Investment-Driven Insurance Pricing: Equilibrium Analysis and Welfare Implication," Papers 2410.18432, arXiv.org.
    2. Asmussen, Søren & Christensen, Bent Jesper & Thøgersen, Julie, 2019. "Nash equilibrium premium strategies for push–pull competition in a frictional non-life insurance market," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 92-100.
    3. Hong Mao & Zhongkai Wen, 2020. "Optimal Decision on Dynamic Insurance Price and Investment Portfolio of an Insurer with Multi-dimensional Time-Varying Correlation," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(1), pages 29-51, March.
    4. Mourdoukoutas, Fotios & Boonen, Tim J. & Koo, Bonsoo & Pantelous, Athanasios A., 2021. "Pricing in a competitive stochastic insurance market," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 44-56.
    5. Boonen, Tim J. & Pantelous, Athanasios A. & Wu, Renchao, 2018. "Non-cooperative dynamic games for general insurance markets," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 123-135.
    6. Hu, Duni & Chen, Shou & Wang, Hailong, 2018. "Robust reinsurance contracts with uncertainty about jump risk," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1175-1188.
    7. Mao, Hong & Carson, James M. & Ostaszewski, Krzysztof M. & Wen, Zhongkai, 2013. "Optimal decision on dynamic insurance price and investment portfolio of an insurer," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 359-369.
    8. Hu, Duni & Wang, Hailong, 2019. "Reinsurance contract design when the insurer is ambiguity-averse," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 241-255.
    9. Søren Asmussen & Bent Jesper Christensen & Julie Thøgersen, 2019. "Stackelberg Equilibrium Premium Strategies for Push-Pull Competition in a Non-Life Insurance Market with Product Differentiation," Risks, MDPI, vol. 7(2), pages 1-23, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:37:y:2007:i:01:p:1-34_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.