IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v34y2004i02p315-332_01.html
   My bibliography  Save this article

Ruin Probabilities and Deficit for the Renewal Risk Model with Phase-type Interarrival Times

Author

Listed:
  • Avram, F.
  • Usábel, M.

Abstract

This paper shows how the multivariate finite time ruin probability function, in a phase-type environment, inherits the phase-type structure and can be efficiently approximated with only one Laplace transform inversion. From a theoretical point of view, we also provide below a generalization of Thorin’s formula (1971) for the double Laplace transform of the finite time ruin probability, by considering also the deficit at ruin; the model is that of a Sparre Andersen (renewal) risk process with phase-type interarrival times. In the case when the claims distribution is of phase-type as well, we obtain also an alternative formula for the single Laplace transform in time (or “exponentially killed probability’’), in terms of the roots with positive real part of the Lundberg’s equations, which complements Asmussen’s representation (1992) in terms of the roots with negative real part.

Suggested Citation

  • Avram, F. & Usábel, M., 2004. "Ruin Probabilities and Deficit for the Renewal Risk Model with Phase-type Interarrival Times," ASTIN Bulletin, Cambridge University Press, vol. 34(2), pages 315-332, November.
  • Handle: RePEc:cup:astinb:v:34:y:2004:i:02:p:315-332_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100013714/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Shuanming & Lu, Yi, 2009. "The distribution of total dividend payments in a Sparre Andersen model," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1246-1251, May.
    2. Ren, Jiandong, 2009. "A connection between the discounted and non-discounted expected penalty functions in the Sparre Andersen risk model," Statistics & Probability Letters, Elsevier, vol. 79(3), pages 324-330, February.
    3. Yi Lu, 2016. "On the Evaluation of Expected Penalties at Claim Instants That Cause Ruin in the Classical Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 237-255, March.
    4. M. Concepcion Ausin & Michael P. Wiper & Rosa E. Lillo, 2009. "Bayesian estimation of finite time ruin probabilities," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(6), pages 787-805, November.
    5. Thampi K. K. & Jacob M. J. & Raju N., 2007. "Ruin Probabilities under Generalized Exponential Distribution," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(1), pages 1-12, May.
    6. Tang, Qihe & Wei, Li, 2010. "Asymptotic aspects of the Gerber-Shiu function in the renewal risk model using Wiener-Hopf factorization and convolution equivalence," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 19-31, February.
    7. Albrecher, Hansjorg & Boxma, Onno J., 2005. "On the discounted penalty function in a Markov-dependent risk model," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 650-672, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:34:y:2004:i:02:p:315-332_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.