IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v34y2004i01p113-124_01.html
   My bibliography  Save this article

An Accurate Asymptotic Approximation for Experience Rated Premiums

Author

Listed:
  • Gatto, Riccardo

Abstract

In the Bayesian approach, the experience rated premium is the value which minimizes an expected loss with respect to a posterior distribution. The posterior distribution is conditioned on the claim experience of the risk insured, represented by a n-tuple of observations. An exact analytical calculation for the experience rated premium is possible under restrictive circumstances only, regarding the prior distribution, the likelihood function, and the loss function. In this article we provide an analytical asymptotic approximation as n → ∞ for the experience rated premium. This approximation can be obtained under more general circumstances, it is simple to compute, and it inherits the good accuracy of the Laplace approximation on which it is based. In contrast with numerical methods, this approximation allows for analytical interpretations. When exact calculations are possible, some analytical comparisons confirm the good accuracy of this approximation, which can even lead to the exact experience rated premium.

Suggested Citation

  • Gatto, Riccardo, 2004. "An Accurate Asymptotic Approximation for Experience Rated Premiums," ASTIN Bulletin, Cambridge University Press, vol. 34(1), pages 113-124, May.
  • Handle: RePEc:cup:astinb:v:34:y:2004:i:01:p:113-124_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S051503610001391X/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:34:y:2004:i:01:p:113-124_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.