IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v33y2003i01p93-104_01.html
   My bibliography  Save this article

Scale Mixtures Distributions in Insurance Applications

Author

Listed:
  • Choy, S.T. Boris
  • Chan, C.M.

Abstract

In this paper non-normal distributions via scale mixtures are introduced into insurance applications. The symmetric distributions of interest are the Student-t and exponential power (EP) distributions. A Bayesian approach is adopted with the aid of simulation to obtain posterior summaries. We shall show that the computational burden for the Bayesian calculations is alleviated via the scale mixtures representations. Illustrative examples are given.

Suggested Citation

  • Choy, S.T. Boris & Chan, C.M., 2003. "Scale Mixtures Distributions in Insurance Applications," ASTIN Bulletin, Cambridge University Press, vol. 33(1), pages 93-104, May.
  • Handle: RePEc:cup:astinb:v:33:y:2003:i:01:p:93-104_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100013325/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wan, Wai-Yin & Chan, Jennifer So-Kuen, 2011. "Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 687-702, January.
    2. Victor Korolev & Alexander Zeifman, 2023. "Mixture Representations for Generalized Burr, Snedecor–Fisher and Generalized Student Distributions with Related Results," Mathematics, MDPI, vol. 11(18), pages 1-25, September.
    3. Benjamin Avanzi & Mark Lavender & Greg Taylor & Bernard Wong, 2022. "Detection and treatment of outliers for multivariate robust loss reserving," Papers 2203.03874, arXiv.org, revised Jun 2023.
    4. Klaus Müller & Wolf-Dieter Richter, 2019. "On p-generalized elliptical random processes," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-37, December.
    5. M. Arendarczyk & T. J. Kozubowski & A. K. Panorska, 2023. "Slash distributions, generalized convolutions, and extremes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 593-617, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:33:y:2003:i:01:p:93-104_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.