IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v22y1992i02p135-148_00.html
   My bibliography  Save this article

Error Bounds for Compound Poisson Approximations of the Individual Risk Model

Author

Listed:
  • De Pril, Nelson
  • Dhaene, Jan

Abstract

The approximation of the individual risk model by a compound Poisson model plays an important role in computational risk theory. It is thus desirable to have sharp lower and upper bounds for the error resulting from this approximation if the aggregate claims distribution, related probabilities or stop-loss premiums are calculated. The aim of this paper is to unify the ideas and to extend to a more general setting the work done in this connection by Bühlmann et al. (1977), Gerber (1984) and others. The quality of the presented bounds is discussed and a comparison with the results of Hipp (1985) and Hipp & Michel (1990) is made.

Suggested Citation

  • De Pril, Nelson & Dhaene, Jan, 1992. "Error Bounds for Compound Poisson Approximations of the Individual Risk Model," ASTIN Bulletin, Cambridge University Press, vol. 22(2), pages 135-148, November.
  • Handle: RePEc:cup:astinb:v:22:y:1992:i:02:p:135-148_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100002440/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roos, Bero, 2007. "On variational bounds in the compound Poisson approximation of the individual risk model," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 403-414, May.
    2. Denuit, Michel & Lefevre, Claude & Utev, Sergey, 2002. "Measuring the impact of dependence between claims occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 1-19, February.
    3. Yang, Jingping & Zhou, Shulin & Zhang, Zhenyong, 2005. "The compound Poisson random variable's approximation to the individual risk model," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 57-77, February.
    4. Gerhold, Stefan & Gülüm, I. Cetin, 2019. "Peacocks nearby: Approximating sequences of measures," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2406-2436.
    5. Denuit, Michel & Van Bellegem, Sébastien, 2001. "On the stop-loss and total variation distances between random sums," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 153-165, June.
    6. Claude Lefèvre & Sergey Utev, 1998. "On Order-Preserving Properties of Probability Metrics," Journal of Theoretical Probability, Springer, vol. 11(4), pages 907-920, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:22:y:1992:i:02:p:135-148_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.