IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v19y1989i02p191-198_00.html
   My bibliography  Save this article

On an Integral Equation for Discounted Compound – Annuity Distributions

Author

Listed:
  • Ramsay, Colin M.

Abstract

We consider a risk generating claims for a period of N consecutive years (after which it expires), N being an integer valued random variable. Let Xk denote the total claims generated in the kth year, k ≥ 1. The Xk 's are assumed to be independent and identically distributed random variables, and are paid at the end of the year. The aggregate discounted claims generated by the risk until it expires is defined as where υ is the discount factor. An integral equation similar to that given by Panjer (1981) is developed for the pdf of SN (υ). This is accomplished by assuming that N belongs to a new class of discrete distributions called annuity distributions. The probabilities in annuity distributions satisfy the following recursion: where an is the present value of an n-year immediate annuity.

Suggested Citation

  • Ramsay, Colin M., 1989. "On an Integral Equation for Discounted Compound – Annuity Distributions," ASTIN Bulletin, Cambridge University Press, vol. 19(2), pages 191-198, November.
  • Handle: RePEc:cup:astinb:v:19:y:1989:i:02:p:191-198_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100008485/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:19:y:1989:i:02:p:191-198_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.