IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v18y1988i02p169-174_00.html
   My bibliography  Save this article

Between Individual and Collective Model for the Total Claims

Author

Listed:
  • Kaas, R.
  • van Heerwaarden, A. E.
  • Goovaerts, M. J.

Abstract

This article studies random variables whose stop-loss rank falls between a certain risk (assumed to be integer-valued and non-negative, but not necessarily of life-insurance type) and the compound Poisson approximation to this risk. They consist of a compound Poisson part to which some independent Bernoulli-type variables are added. Replacing each term in an individual model with such a random variable leads to an approximating model for the total claims on a portfolio of contracts that is computationally almost as attractive as the compound Poisson approximation used in the standard collective model. The resulting stop-loss premiums are much closer to the real values.

Suggested Citation

  • Kaas, R. & van Heerwaarden, A. E. & Goovaerts, M. J., 1988. "Between Individual and Collective Model for the Total Claims," ASTIN Bulletin, Cambridge University Press, vol. 18(2), pages 169-174, November.
  • Handle: RePEc:cup:astinb:v:18:y:1988:i:02:p:169-174_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100004104/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Mak & Derek Bingham & Yi Lu, 2016. "A regional compound Poisson process for hurricane and tropical storm damage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 677-703, November.
    2. Yang, Jingping & Zhou, Shulin & Zhang, Zhenyong, 2005. "The compound Poisson random variable's approximation to the individual risk model," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 57-77, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:18:y:1988:i:02:p:169-174_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.