IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v16y1986is1ps59-s79_01.html
   My bibliography  Save this article

Mixed Compound Poisson Distributions

Author

Listed:
  • Willmot, Gord

Abstract

The distribution of total claims payable by an insurer is considered when the frequency of claims is a mixed Poisson random variable. It is shown how in many cases the total claims density can be evaluated numerically using simple recursive formulae (discrete or continuous). Mixed Poisson distributions often have desirable properties for modelling claim frequencies. For example, they often have thick tails which make them useful for long-tailed data. Also, they may be interpreted as having arisen from a stochastic process. Mixing distributions considered include the inverse Gaussian, beta, uniform, non-central chi-squared, and the generalized inverse Gaussian as well as other more general distributions. It is also shown how these results may be used to derive computational formulae for the total claims density when the frequency distribution is either from the Neyman class of contagious distributions, or a class of negative binomial mixtures. Also, a computational formula is derived for the probability distribution of the number in the system for the M/G/1 queue with bulk arrivals.

Suggested Citation

  • Willmot, Gord, 1986. "Mixed Compound Poisson Distributions," ASTIN Bulletin, Cambridge University Press, vol. 16(S1), pages 59-79, April.
  • Handle: RePEc:cup:astinb:v:16:y:1986:i:s1:p:s59-s79_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S051503610001165X/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sundt, Bjorn, 2002. "Recursive evaluation of aggregate claims distributions," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 297-322, June.
    2. Vanni, Fabio, 2024. "A visit generation process for human mobility random graphs with location-specific latent-variables: From land use to travel demand," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    3. Franco-Arbeláez, Luis Ceferino & Franco-Ceballos, Luis Eduardo & Murillo-Gómez, Juan Guillermo & Venegas-Martínez, Francisco, 2015. "Riesgo operativo en el sector salud en Colombia [Operational Risk in the Health Sector in Colombia]," MPRA Paper 63149, University Library of Munich, Germany.
    4. Venegas-Martínez, Francisco & Franco-Arbeláez, Luis Ceferino & Franco-Ceballos, Luis Eduardo & Murillo-Gómez, Juan Guillermo, 2015. "Riesgo operativo en el sector salud en Colombia: 2013," eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(43), pages 7-36, segundo s.
    5. A.Hernández-Bastida & J. M. Pérez–Sánchez & E. Gómez-Deniz, 2007. "Bayesian Analysis Of The Compound Collective Model: The Net Premium Principle With Exponential Poisson And Gamma–Gamma Distributions," FEG Working Paper Series 07/03, Faculty of Economics and Business (University of Granada).
    6. Nobuaki Hoshino, 2005. "Engen's extended negative binomial model revisited," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(2), pages 369-387, June.
    7. Korolev, Victor & Zeifman, Alexander, 2021. "Bounds for convergence rate in laws of large numbers for mixed Poisson random sums," Statistics & Probability Letters, Elsevier, vol. 168(C).
    8. Ján Mačutek & Gejza Wimmer & Michaela Koščová, 2022. "On a Parametrization of Partial-Sums Discrete Probability Distributions," Mathematics, MDPI, vol. 10(14), pages 1-8, July.
    9. Gómez-Déniz, Emilio & Sarabia, José María & Calderín-Ojeda, Enrique, 2011. "A new discrete distribution with actuarial applications," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 406-412, May.
    10. Leda Minkova & N. Balakrishnan, 2013. "Compound weighted Poisson distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(4), pages 543-558, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:16:y:1986:i:s1:p:s59-s79_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.