Author
Abstract
A great attention has been devoted, in the actuarial literature, to premium calculation principles and it has been often emphasized that these principles should not only be defined in strictly actuarial terms, but should also take into account the market conditions (Bühlmann (1980), de Jong (1981)).In this paper we propose a decision model to define the pricing policy of an insurance company that operates in a market which is stratified in k risk classes .It is assumed that any class constitutes a homogeneous collective containing independent risks Sj(t) of compound Poisson type, with the same intensity λj. The number nj of risks of that are held in the insurance portfolio depends on the premium charged to the class by means of a demand function which captures the concept of risk aversion and represents the fraction of individuals of , that insure themselves at the annual premium xj.With these assumptions, the return Y on the portfolio is a function of the vector x = (x1, x2, …, xk) of the prices charged to the single classes (and of the time) and x is therefore the decision policy instrument adopted by the company for the selection of the portfolio, whose optimal composition is evaluated according to a risk-return type performance criterion.As a measure of risk we adopt the ultimate ruin probability q(w) that, in the assumptions of our model, can be related to a safety index τ, by means of Lundberg-de Finetti inequality. Even though it has been widely debated in the actuarial field, the use of q(w) offers undeniable operational advantages. In our case the safety index τ can be expressed as a function of x and therefore, in the phase of selecting an efficient portfolio, it becomes the function to be maximized, for a given level M of the expected return.
Suggested Citation
Moriconi, Franco, 1982.
"A Pricing Model in a Sensitive Insurance Market,"
ASTIN Bulletin, Cambridge University Press, vol. 13(2), pages 135-149, December.
Handle:
RePEc:cup:astinb:v:13:y:1982:i:02:p:135-149_00
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:13:y:1982:i:02:p:135-149_00. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.