IDEAS home Printed from https://ideas.repec.org/a/cup/apsrev/v113y2019i4p1060-1065_12.html
   My bibliography  Save this article

BARP: Improving Mister P Using Bayesian Additive Regression Trees

Author

Listed:
  • BISBEE, JAMES

Abstract

Multilevel regression and post-stratification (MRP) is the current gold standard for extrapolating opinion data from nationally representative surveys to smaller geographic units. However, innovations in nonparametric regularization methods can further improve the researcher’s ability to extrapolate opinion data to a geographic unit of interest. I test an ensemble of regularization algorithms and find that there is room for substantial improvement on the multilevel model via more flexible methods of regularization. I propose a modified version of MRP that replaces the multilevel model with a nonparametric approach called Bayesian additive regression trees (BART or, when combined with post-stratification, BARP). I compare both methods across a number of data contexts, demonstrating the benefits of applying more powerful regularization methods to extrapolate opinion data to target geographical units. I provide an R package that implements the BARP method.

Suggested Citation

  • Bisbee, James, 2019. "BARP: Improving Mister P Using Bayesian Additive Regression Trees," American Political Science Review, Cambridge University Press, vol. 113(4), pages 1060-1065, November.
  • Handle: RePEc:cup:apsrev:v:113:y:2019:i:4:p:1060-1065_12
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0003055419000480/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lundberg, Ian & Brand, Jennie E. & Jeon, Nanum, 2022. "Researcher reasoning meets computational capacity: Machine learning for social science," SocArXiv s5zc8, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:apsrev:v:113:y:2019:i:4:p:1060-1065_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/psr .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.