IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v8y2014i01p63-78_00.html
   My bibliography  Save this article

The density of the time of ruin in the classical risk model with a constant dividend barrier

Author

Listed:
  • Li, Shuanming
  • Lu, Yi

Abstract

In this paper, we investigate the density function of the time of ruin in the classical risk model with a constant dividend barrier. When claims are exponentially distributed, we derive explicit expressions for the density function of the time of ruin and its decompositions: the density of the time of ruin without dividend payments and the density of the time of ruin with dividend payments. These densities are obtained based on their Laplace transforms, and expressed in terms of some special functions which are computationally tractable. The Laplace transforms are being inverted using a magnificent tool, the Lagrange inverse formula, developed in Dickson and Willmot (2005). Several numerical examples are given to illustrate our results.

Suggested Citation

  • Li, Shuanming & Lu, Yi, 2014. "The density of the time of ruin in the classical risk model with a constant dividend barrier," Annals of Actuarial Science, Cambridge University Press, vol. 8(1), pages 63-78, March.
  • Handle: RePEc:cup:anacsi:v:8:y:2014:i:01:p:63-78_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1748499513000110/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuanming Li & Yi Lu & Can Jin, 2016. "Number of Jumps in Two-Sided First-Exit Problems for a Compound Poisson Process," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 747-764, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:8:y:2014:i:01:p:63-78_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.