IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v7y2013i01p61-100_00.html
   My bibliography  Save this article

A scaling model for severity of operational losses using generalized additive models for location scale and shape (GAMLSS)

Author

Listed:
  • Ganegoda, Amandha
  • Evans, John

Abstract

In this paper, we investigate the problem of how to combine operational losses collected from various banks of different sizes and loss reporting thresholds in order to estimate the distribution of operational loss severities for a bank of a given size. We model the severity of operational losses by using the extreme value theory to account for the reporting bias of the external data, and a regression analysis based on the GAMLSS framework to model the scaling properties of operational losses. In contrast to previous studies on the scaling problem, our analysis gives particular emphasis to the scaling properties of the tail of the loss distribution. Contrary to existing knowledge, we find that the size of a bank is an important determinant of the severity of operational losses and that the tail index of the distribution is negatively correlated with the size of the bank. The results indicate that for very large banks, distribution of the operational loss severity can be extremely heavy tailed (i.e. tail index less than 1), a finding which have significant implications for capital calculation as well as for risk management. Furthermore, we also demonstrate that the capital estimates provided by our model is consistent with the industry standards and the model can be used by individual banks to simulate data to complement their internal data.

Suggested Citation

  • Ganegoda, Amandha & Evans, John, 2013. "A scaling model for severity of operational losses using generalized additive models for location scale and shape (GAMLSS)," Annals of Actuarial Science, Cambridge University Press, vol. 7(1), pages 61-100, March.
  • Handle: RePEc:cup:anacsi:v:7:y:2013:i:01:p:61-100_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1748499512000267/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2014. "Nonlife ratemaking and risk management with Bayesian generalized additive models for location, scale, and shape," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 225-249.
    2. Valérie Chavez-Demoulin & Paul Embrechts & Marius Hofert, 2016. "An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 735-776, September.
    3. Malavasi, Matteo & Peters, Gareth W. & Shevchenko, Pavel V. & Trück, Stefan & Jang, Jiwook & Sofronov, Georgy, 2022. "Cyber risk frequency, severity and insurance viability," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 90-114.
    4. Matteo Malavasi & Gareth W. Peters & Stefan Treuck & Pavel V. Shevchenko & Jiwook Jang & Georgy Sofronov, 2024. "Cyber Risk Taxonomies: Statistical Analysis of Cybersecurity Risk Classifications," Papers 2410.05297, arXiv.org.
    5. Matteo Malavasi & Gareth W. Peters & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang & Georgy Sofronov, 2021. "Cyber Risk Frequency, Severity and Insurance Viability," Papers 2111.03366, arXiv.org, revised Mar 2022.
    6. Gareth W. Peters & Pavel V. Shevchenko & Bertrand K. Hassani & Ariane Chapelle, 2016. "Standardized Measurement Approach for Operational risk: Pros and Cons," Documents de travail du Centre d'Economie de la Sorbonne 16064, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    7. Gareth W. Peters & Pavel V. Shevchenko & Bertrand Hassani & Ariane Chapelle, 2016. "Should the advanced measurement approach be replaced with the standardized measurement approach for operational risk?," Papers 1607.02319, arXiv.org, revised Sep 2016.
    8. Roc'io Paredes & Marco Vega, 2020. "An internal fraud model for operational losses in retail banking," Papers 2002.03235, arXiv.org.
    9. Gareth W. Peters & Pavel V. Shevchenko & Bertrand K. Hassani & Ariane Chapelle, 2016. "Standardized Measurement Approach for Operational risk: Pros and Cons," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01391062, HAL.
    10. Gareth W. Peters & Pavel V. Shevchenko & Bertrand K. Hassani & Ariane Chapelle, 2016. "Should the advanced measurement approach be replaced with the standardized measurement approach for operational risk?," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01391091, HAL.
    11. Martin Eling & Kwangmin Jung, 2022. "Heterogeneity in cyber loss severity and its impact on cyber risk measurement," Risk Management, Palgrave Macmillan, vol. 24(4), pages 273-297, December.
    12. Gareth W. Peters & Pavel V. Shevchenko & Bertrand K. Hassani & Ariane Chapelle, 2016. "Standardized Measurement Approach for Operational risk: Pros and Cons," Post-Print halshs-01391062, HAL.
    13. Eling, Martin & Wirfs, Jan, 2019. "What are the actual costs of cyber risk events?," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1109-1119.
    14. Pavel V. Shevchenko & Gareth W. Peters, 2013. "Loss Distribution Approach for Operational Risk Capital Modelling under Basel II: Combining Different Data Sources for Risk Estimation," Papers 1306.1882, arXiv.org.
    15. Gareth W. Peters & Pavel V. Shevchenko & Bertrand K. Hassani & Ariane Chapelle, 2016. "Should the advanced measurement approach be replaced with the standardized measurement approach for operational risk?," Post-Print halshs-01391091, HAL.
    16. Gareth W. Peters & Pavel V. Shevchenko & Bertrand K. Hassani & Ariane Chapelle, 2016. "Should the advanced measurement approach be replaced with the standardized measurement approach for operational risk?," Documents de travail du Centre d'Economie de la Sorbonne 16065, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:7:y:2013:i:01:p:61-100_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.