IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v18y2024i3p712-739_9.html
   My bibliography  Save this article

Smoothness and monotonicity constraints for neural networks using ICEnet

Author

Listed:
  • Richman, Ronald
  • Wüthrich, Mario V.

Abstract

Deep neural networks have become an important tool for use in actuarial tasks, due to the significant gains in accuracy provided by these techniques compared to traditional methods, but also due to the close connection of these models to the generalized linear models (GLMs) currently used in industry. Although constraining GLM parameters relating to insurance risk factors to be smooth or exhibit monotonicity is trivial, methods to incorporate such constraints into deep neural networks have not yet been developed. This is a barrier for the adoption of neural networks in insurance practice since actuaries often impose these constraints for commercial or statistical reasons. In this work, we present a novel method for enforcing constraints within deep neural network models, and we show how these models can be trained. Moreover, we provide example applications using real-world datasets. We call our proposed method ICEnet to emphasize the close link of our proposal to the individual conditional expectation model interpretability technique.

Suggested Citation

  • Richman, Ronald & Wüthrich, Mario V., 2024. "Smoothness and monotonicity constraints for neural networks using ICEnet," Annals of Actuarial Science, Cambridge University Press, vol. 18(3), pages 712-739, November.
  • Handle: RePEc:cup:anacsi:v:18:y:2024:i:3:p:712-739_9
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S174849952400006X/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:18:y:2024:i:3:p:712-739_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.