IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v18y2024i3p692-711_8.html
   My bibliography  Save this article

Distill knowledge of additive tree models into generalized linear models: a new learning approach for non-smooth generalized additive models

Author

Listed:
  • Maillart, Arthur
  • Robert, Christian

Abstract

Generalized additive models (GAMs) are a leading model class for interpretable machine learning. GAMs were originally defined with smooth shape functions of the predictor variables and trained using smoothing splines. Recently, tree-based GAMs where shape functions are gradient-boosted ensembles of bagged trees were proposed, leaving the door open for the estimation of a broader class of shape functions (e.g. Explainable Boosting Machine (EBM)). In this paper, we introduce a competing three-step GAM learning approach where we combine (i) the knowledge of the way to split the covariates space brought by an additive tree model (ATM), (ii) an ensemble of predictive linear scores derived from generalized linear models (GLMs) using a binning strategy based on the ATM, and (iii) a final GLM to have a prediction model that ensures auto-calibration. Numerical experiments illustrate the competitive performances of our approach on several datasets compared to GAM with splines, EBM, or GLM with binarsity penalization. A case study in trade credit insurance is also provided.

Suggested Citation

  • Maillart, Arthur & Robert, Christian, 2024. "Distill knowledge of additive tree models into generalized linear models: a new learning approach for non-smooth generalized additive models," Annals of Actuarial Science, Cambridge University Press, vol. 18(3), pages 692-711, November.
  • Handle: RePEc:cup:anacsi:v:18:y:2024:i:3:p:692-711_8
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1748499524000241/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:18:y:2024:i:3:p:692-711_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.