IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v18y2024i1p5-29_2.html
   My bibliography  Save this article

On Bayesian credibility mean for finite mixture distributions

Author

Listed:
  • Jahanbani, Ehsan
  • Payandeh Najafabadi, Amir T.
  • Masoumifard, Khaled

Abstract

Consider the problem of determining the Bayesian credibility mean $E(X_{n+1}|X_1,\cdots, X_n),$ whenever the random claims $X_1,\cdots, X_n,$ given parameter vector $\boldsymbol{\Psi},$ are sampled from the K-component mixture family of distributions, whose members are the union of different families of distributions. This article begins by deriving a recursive formula for such a Bayesian credibility mean. Moreover, under the assumption that using additional information $Z_{i,1},\cdots,Z_{i,m},$ one may probabilistically determine a random claim $X_i$ belongs to a given population (or a distribution), the above recursive formula simplifies to an exact Bayesian credibility mean whenever all components of the mixture distribution belong to the exponential families of distributions. For a situation where a 2-component mixture family of distributions is an appropriate choice for data modelling, using the logistic regression model, it shows that: how one may employ such additional information to derive the Bayesian credibility model, say Logistic Regression Credibility model, for a finite mixture of distributions. A comparison between the Logistic Regression Credibility (LRC) model and its competitor, the Regression Tree Credibility (RTC) model, has been given. More precisely, it shows that under the squared error loss function, it shows the LRC’s risk function dominates the RTC’s risk function at least in an interval which about $0.5.$ Several examples have been given to illustrate the practical application of our findings.

Suggested Citation

  • Jahanbani, Ehsan & Payandeh Najafabadi, Amir T. & Masoumifard, Khaled, 2024. "On Bayesian credibility mean for finite mixture distributions," Annals of Actuarial Science, Cambridge University Press, vol. 18(1), pages 5-29, March.
  • Handle: RePEc:cup:anacsi:v:18:y:2024:i:1:p:5-29_2
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1748499523000076/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:18:y:2024:i:1:p:5-29_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.